Skip to main content
Log in

Molecular Dynamics Simulations on the Tensile Failure of Crystalline CoSb3 Along Different Orientations

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As an intermediate-temperature thermoelectric material, CoSb3 attracts broad attention. To promote the understanding of its deformation mechanism and mechanical failure under tension, we performed molecular dynamics simulations for single-crystalline CoSb3 bulk in this work. The first step was to assess the reliability of this methodology. Since the lattice structure of CoSb3 is not isotropic, the uniaxial tension was sequentially implemented along the five typical crystal orientations ([100], [110], [210], [111], and [211]). The stress–strain responses demonstrate the nonlinear elasticity and brittleness of CoSb3, but remarkable differences in vital mechanical parameters for different tensile orientations. To trace the origin of the brittle failure, the data for the bond length variations were obtained during the tensile process of each orientation, and they show dissimilar patterns. Through careful observations of atomic snapshots, we also discovered that different tensile orientations can result in different fracture patterns of CoSb3. The intrinsic mechanical behavior of crystalline CoSb3, revealed in this work, is expected to provide useful information for the realistic application of nanostructure skutterudites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Nature, 2011, 473, p 66–69

    Article  CAS  Google Scholar 

  2. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications, Annu. Rev. Mater. Sci., 1999, 29, p 89–116

    Article  CAS  Google Scholar 

  3. Z. Liu, J. Mao, T. Liu, G. Chen, and Z. Ren, Nano-Microstructural Control of Phonon Engineering for Thermoelectric Energy Harvesting, MRS Bull., 2018, 43, p 181–186

    Article  Google Scholar 

  4. B. Duan, J. Yang, J.R. Salvador, Y. He, B. Zhao, S. Wang, P. Wei, F.S. Ohuchi, W. Zhang, R.P. Hermann, O. Gourdon, S.X. Mao, Y. Cheng, C. Wang, J. Liu, P. Zhai, X. Tang, Q. Zhang, and J. Yang, Electronegative Guests in CoSb3, Energy Environ. Sci., 2016, 9, p 2090–2098

    Article  CAS  Google Scholar 

  5. Y. Tang, Z.M. Gibbs, L.A. Agapito, G. Li, H.-S. Kim, M.B. Nardelli, S. Curtarolo, and G.J. Snyder, Convergence of Multi-Valley Bands as the Electronic Origin of High Thermoelectric Performance in CoSb3 Skutterudites, Nat. Mater., 2015, 14, p 1223–1228

    Article  CAS  Google Scholar 

  6. L. Xi, Y. Qiu, S. Zheng, X. Shi, J. Yang, L. Chen, D.J. Singh, J. Yang, and W. Zhang, Complex Doping of Group 13 Elements In and Ga in Caged Skutterudite CoSb3, Acta Mater., 2015, 85, p 112–121

    Article  CAS  Google Scholar 

  7. M.T. Barako, W. Park, A.M. Marconnet, M. Asheghi, and K.E. Goodson, Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module, J. Electron. Mater., 2013, 42, p 372–381

    Article  CAS  Google Scholar 

  8. G. Rogl and P. Rogl, Mechanical Properties of Skutterudites, Sci. Adv. Mater., 2011, 3, p 517–538

    Article  CAS  Google Scholar 

  9. R.D. Schmidt, E.D. Case, J.E. Ni, J.S. Sakamoto, R.M. Trejo, E. Lara-Curzio, E.A. Payzant, M.J. Kirkham, and R.A. Peascoe-Meisner, The Temperature Dependence of Thermal Expansion for p-Type Ce0.9Fe3.5Co0.5Sb12 and n-Type Co0.95Pd0.05Te0.05Sb3 Skutterudite Thermoelectric Materials, Philos. Mag., 2012, 92, p 1261–1286

    Article  CAS  Google Scholar 

  10. J. Eilertsen, M.A. Subramanian, and J.J. Kruzic, Fracture Toughness of Co4Sb12 and In0.1Co4Sb12 Thermoelectric Skutterudites Evaluated by Three Methods, J. Alloys Compd., 2013, 552, p 492–498

    Article  CAS  Google Scholar 

  11. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 1995, 117, p 1–19

    Article  CAS  Google Scholar 

  12. X. Yang, P. Zhai, L. Liu, and Q. Zhang, Thermodynamic and Mechanical Properties of Crystalline CoSb3: A Molecular Dynamics Simulation Study, J. Appl. Phys., 2011, 109, p 123517(1-6)

    Google Scholar 

  13. G. Li, Q. An, W. Li, W.A. Goddard, R. Hanus, P. Zhai, Q. Zhang, and G.J. Snyder, Atomistic Explanation of Brittle Failure of Thermoelectric Skutterudite CoSb3, Acta Mater., 2016, 103, p 775–780

    Article  CAS  Google Scholar 

  14. X. Yang, A. Zhou, L. Liu, Q. Zhang, and P. Zhai, Enhanced Interatomic Potential for Skutterudite CoSb3 in Molecular Dynamics Simulations, J. Electron. Mater., 2010, 39, p 1714–1718

    Article  CAS  Google Scholar 

  15. B. Huang and M. Kaviany, Filler-Reduced Phonon Conductivity of Thermoelectric Skutterudites: Ab Initio Calculations and Molecular Dynamics Simulations, Acta Mater., 2010, 58, p 4516–4526

    Article  CAS  Google Scholar 

  16. Large Scale Atomic/Molecular Massively Parallel Simulator, LAMMPS. http://lammps.sandia.gov. Accessed 1 Dec 2013

  17. C.E. Byung, Molecular Representation of Molar Domain (Volume), Evolution Equations, and Linear Constitutive Relations for Volume Transport, J. Chem. Phys., 2008, 129, p 094502

    Article  Google Scholar 

  18. Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles, Phys. Rev. B, 2007, 76, p 054115

    Article  Google Scholar 

  19. G. Li, Q. An, W. Li, W.A. Goddard, P. Zhai, Q. Zhang, and G.J. Snyder, Brittle Failure Mechanism in Thermoelectric Skutterudite CoSb3, Chem. Mater., 2015, 27, p 6329–6336

    Article  CAS  Google Scholar 

  20. T. Schmidt, G. Kliche, and H.D. Lutz, Structure Refinement of Skutterudite-Type Cobalt Triantimonide CoSb3, Acta Cryst. Sect. C Cryst. Struct. Commun., 1987, 43, p 1678–1679

    Article  Google Scholar 

  21. C. Recknagel, N. Reinfried, P. Hohn, W. Schnelle, H. Rosner, Y. Grin, and A. Leithe-Jasper, Application of Spark Plasma Sintering to the Fabrication of Binary and Ternary Skutterudites, Sci. Technol. Adv. Mater., 2007, 8, p 357–363

    Article  CAS  Google Scholar 

  22. J.R. Salvador, J. Yang, X. Shi, H. Wang, A.A. Wereszczak, H. Kong, and C. Uher, Transport and Mechanical Properties of Yb Filled Skutterudites, Philos. Mag., 2009, 89, p 1517–1534

    Article  CAS  Google Scholar 

  23. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18, p 015012

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51972253). We acknowledge Sandia National Laboratories for distributing the open-source MD code LAMMPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-qiu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Yang, Xq. Molecular Dynamics Simulations on the Tensile Failure of Crystalline CoSb3 Along Different Orientations. J. of Materi Eng and Perform 29, 4659–4668 (2020). https://doi.org/10.1007/s11665-020-04953-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04953-0

Keywords

Navigation