Skip to main content
Log in

Ba-Filling Effect on the Uniaxial Tensile and Compressive Mechanical Behavior of Crystalline CoSb3: A Molecular Dynamics Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Filled skutterudites, which possess application potential, are believed to be a class of novel thermoelectric materials. The contribution of atomic filling to the significant decrease of phonon conductivity is investigated extensively in the literature. However, the filling effect on the fundamental mechanical behavior is not so far very clear. In the present study, molecular dynamics simulations have been performed to investigate the effect of Ba-filling on the uniaxial tensile and compressive mechanical properties of crystalline CoSb3 with a multibody interatomic potential. First, we constructed the fully Ba-filled CoSb3 model according to the ideal lattice structure. For comparison, pure binary CoSb3 was also modeled. Then, the simulation models were relaxed to reach more favorable configurations. Thereafter, the uniaxial tension and compression were carried out by strain-controlling until failure at room temperature. Stress–strain curves were obtained during the whole deformation process. The atomic rearrangements and failure patterns were also examined. The comparison of these mechanical responses between the filled and unfilled CoSb3 was made and analyzed. The results are expected to be helpful for the application of high-performance skutterudites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Eilertsen, S. Rouvimov, and M.A. Subramanian, Acta Mater. 60, 2178 (2012).

    Article  Google Scholar 

  2. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, and L.D. Zhao, J. Appl. Phys. 102, 103717 (2007).

    Article  Google Scholar 

  3. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher, Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  4. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  5. R.C. Mallik, R. Anbalagan, G. Rogl, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, and S. Suwas, Acta Mater. 61, 6698 (2013).

    Article  Google Scholar 

  6. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  7. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  Google Scholar 

  8. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  Google Scholar 

  9. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  10. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).

    Article  Google Scholar 

  11. J.R. Salvador, J. Yang, X. Shi, H. Wang, A.A. Wereszczak, H. Kong, and C. Uher, Philos. Mag. 89, 1517 (2009).

    Article  Google Scholar 

  12. L. Zhang, G. Rogl, A. Grytsiv, S. Puchegger, J. Koppensteiner, F. Spieckermann, H. Kabelka, M. Reinecker, P. Rogl, W. Schranz, M. Zehetbauer, and M.A. Carpenter, Mater. Sci. Eng. B 170, 26 (2010).

    Article  Google Scholar 

  13. X.Q. Yang, P.C. Zhai, L.S. Liu, and Q.J. Zhang, J. Appl. Phys. 109, 123517 (2011).

    Article  Google Scholar 

  14. X.Q. Yang, P.C. Zhai, L.S. Liu, and Q.J. Zhang, Physica B 407, 2234 (2012).

    Article  Google Scholar 

  15. X.Q. Yang, P.C. Zhai, C. Cai, L.S. Liu, and Q.J. Zhang, J. Electron. Mater. 43, 1837 (2014).

    Article  Google Scholar 

  16. Daan Frenkel and Berend Smit, Understanding Molecular Simulation: From Algorithms to Applications (California, USA: Academic Press, 2002).

    Google Scholar 

  17. D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, Phys. Rev. B 51, 9622 (1995).

    Article  Google Scholar 

  18. B.L. Huang and M. Kaviany, Acta Mater. 58, 4516 (2010).

    Article  Google Scholar 

  19. LAMMPS (April, 2013), available at: http://lammps. sandia.gov.

  20. B. Duan, P.C. Zhai, S.J. Ding, C.L. Xu, G.D. Li, L.S. Liu, P. Li, and Q.J. Zhang, J. Electron. Mater. 43, 2115 (2014).

    Article  Google Scholar 

  21. C. Recknagel, N. Reinfried, P. Hohn, W. Schnelle, H. Rosner, Yu Grin, and A. Leithe-Jasper, Sci. Technol. Adv. Mater. 8, 357 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-qiu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xq., Li, Wj., Chen, G. et al. Ba-Filling Effect on the Uniaxial Tensile and Compressive Mechanical Behavior of Crystalline CoSb3: A Molecular Dynamics Study. J. Electron. Mater. 44, 1438–1443 (2015). https://doi.org/10.1007/s11664-014-3402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3402-0

Keywords

Navigation