Skip to main content
Log in

Structural and magnetic properties of samarium-substituted spinel ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Modern fundamental science is fascinated by spinel ferrite's unique properties and potential applications. The sol–gel method was used to prepare the spinel ferrites. The synthesized samples have formula MgSmxFe2−xO4 (x = 0, 0.025, 0.05, 0.075, 0.10). The structural properties of all the samples were measured by X-ray diffraction analysis. All the samples have a cubic spinel structure, while few traces of the secondary phase were observed in the last two samples. The magnetic properties of all the samples were measured from + 2000 to – 2000 Oe. The narrow loops of all the samples proved their soft nature. The Curie temperature was decreased with the substitution of samarium ions. The saturation magnetization and remanence decreased with the substitution of samarium ions, while coercivity was enhanced. The magnetic moments have the same trend as magnetization, while the anisotropy constant was increased with the substitution of rare-earth ions. All these parameters suggested that these prepared samples may be suitable for high-density magnetic recording applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.M.T. Farid, M. Morsi, T.I. Al-Muhimeed, A.A. AlObaid, O.A. Alamri, H. Albalawi, S.R. Ejaz, R.Y. Khosa, S. Mehmood, Z. Ali, Optoelectronic and thermoelectric properties of A3AsN (A = Mg, Ca, Sr and Ba) in cubic and orthorhombic phase. J. Mater. Res. Technol. 13, 1485–1495 (2021)

    Article  Google Scholar 

  2. M.S. Shah, F. Yasmeen, S.R. Ejaz, R.Y. Khosa, M. Imran, M.A. Assiri, I. Ahmad, N. Ahmad, A.R. Khan, H.M.T. Farid, Structure, electronic, magnetic and thermoelectric properties of the highly Mg-rich intermetallic NdNiMg15 by hybrid density functional theory. J. Electron. Mater. 50, 3976–3985 (2021)

    Article  ADS  Google Scholar 

  3. R. Ramzan, M. Tariq, M.N. Ashiq, H. Albalawi, I. Ahmad, M.H. Alhossainy, S.R. Ejaz, R.Y. Khosa, H.M.T. Farid, H.M. Khan, T.I. Al-Muhimeedh, A.A. AlObaid, Effect of yttrium ion on electrical and magnetic properties of barium based spinel ferrites. J. Mater. Res. Technol. 12, 1104–1112 (2021)

    Article  Google Scholar 

  4. A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, A.R. Khan, I. Ali, H.M.T. Farid, T. Ghrib, S.R. Ejaz, R.Y. Khosa, Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol–gel method. J. Mater. Res. Technol. 11, 158–169 (2021)

    Article  Google Scholar 

  5. A. Hakeem, T. Alshahrani, I. Ali, M.H. Alhossainy, R.Y. Khosa, G. Muhammad, A.R. Khan, H.M.T. Farid, Synthesis and characterization of composites for microwave devices. Chin. J. Phys. 70, 232–239 (2021)

    Article  Google Scholar 

  6. T.H. Flemban, M.C. Sequeira, Z. Zhang, S. Venkatesh, E. Alves, K. Lorenz, Identifying the influence of the intrinsic defects in Gd-doped ZnO thin-films. J. Appl. Phys. 119(6), 065301 (2016)

    Article  ADS  Google Scholar 

  7. I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, N. Karamat, Effect of Tb–Mn substitution on DC and AC conductivity of Y-type hexagonal ferrite. J. Alloys Compd. 579, 576 (2013)

    Article  Google Scholar 

  8. C.V. Ramana, Y.D. Kolekar, K.K. Bharathi, B. Sinha, K. Ghosh, Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. J. Appl. Phys. 114, 183907 (2013)

    Article  ADS  Google Scholar 

  9. T.H. Flemban, V. Singaravelu, A.A.S. Devi, I.S. Roqan, Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer. RSC Adv. 5(115), 94670–94678 (2015)

    Article  ADS  Google Scholar 

  10. C. Radhakrishnamurthy, S.D. Likhite, P. Sahasrabudhe, In situ magnetic measurements on igneous rock bodies. Proc. Indian Acad. Sci. (Chem. Sci.) 87A, 245–254 (1978)

    Google Scholar 

  11. P.N. Vasambekar, C.B. Kolekar, A.S. Vaingankar, Cation distribution and susceptibility study of Cd–Co and Cr3+ substituted Cd–Co ferrites. J. Magn. Magn. Mater. 186, 333–341 (1998)

    Article  ADS  Google Scholar 

  12. R.V. Upadhyay, G.L. Baldha, A simplified model to calculate Curie temperature of ferrimagnetic spinels. Indian J. Phys. 63A, 835–838 (1989)

    Google Scholar 

  13. A. Hakeem, T. Alshahrani, H.M.T. Farid, A.R. Khan, M.H. Alhossainy, A. Laref, I. Ali, Manganese-based spinel ferrites for microwave absorption. J. Mater. Sci. Mater. Electron. 32, 2557–2563 (2021)

    Article  Google Scholar 

  14. S. Yousaf, I. Ahmad, M. Kanwal, T. Alshahrani, H.H. Alhashim, N.A. Kattan, H.M.T. Farid, A. Riaz, T. Mehran, A. Laref, Structural and electrical properties of Ba-substituted spinel ferrites. Mater. Sci. Semicond. Process. 122, 105488 (2021)

    Article  Google Scholar 

  15. S. Munir, I. Ahmad, A. Laref, M.T. Farid, Effect of Nd-substitution on hexagonal ferrites for memory devices. J. Appl. Phys. A Mater. Sci. Process. 126, 722 (2020)

    Article  ADS  Google Scholar 

  16. H.M.T. Farid, I. Ahmad, I. Ali, S.M. Ramay, A. Mahmood, Study of spinel ferrites with addition of small amount of metallic elements. J. Electroceram. 42, 57–66 (2019)

    Article  Google Scholar 

  17. K.Y. Butt, S. Aman, A.A. AlObaid et al., The study of structural, magnetic and dielectric properties of spinel ferrites for microwave absorption applications. Appl. Phys. A 127, 714 (2021). https://doi.org/10.1007/s00339-021-04827-9

    Article  ADS  Google Scholar 

  18. G. Wang, Y. Ma, Z. Wei et al., Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem. Eng. J. 289, 150–160 (2016). https://doi.org/10.1016/j.cej.2015.12.072

    Article  Google Scholar 

  19. S.-H. Xu, D.-L. Feng, D.-X. Li et al., Preparation of magnetic photocatalyst TiO2 supported on NiFe2O4 and effect of magnetic carrier on photocatalytic activity. Chin. J. Chem. 26, 842–846 (2008). https://doi.org/10.1002/cjoc.200890156

    Article  Google Scholar 

  20. S. Arasi, R.V. Antony, M. Joseph, Impact of dysprosium (Dy3+) doping on size, optical and dielectric properties of titanium dioxide nanoparticles grown by low temperature hydrothermal method. J. Mater. Sci. Mater. Electron. 29, 3170–3177 (2017)

    Article  Google Scholar 

  21. A. Iftikhar, S. Yousaf, A.F.A. Ahmed et al., Erbium-substituted Ni0.4Co0.6Fe2O4 ferrite nanoparticles and their hybrids with reduced graphene oxide as magnetically separable powder photocatalyst. Ceram. Int. 46(1), 1203–1210 (2020). https://doi.org/10.1016/j.ceramint.2019.08.176

    Article  Google Scholar 

  22. Y.M. Shulga, S.A. Baskakov, Y.V. Baskakova et al., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. J. Power Sources 279, 722–730 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.032

    Article  ADS  Google Scholar 

  23. A. Rahman, H. Sabeeh, S. Zulfiqar et al., Structural, optical and photocatalytic studies of trimetallic oxides nanostructures prepared via wet chemical approach. Synth. Met. 259, 116228 (2020). https://doi.org/10.1016/j.synthmet.2019.116228

    Article  Google Scholar 

  24. S. Yousaf, S. Zulfiqar, M. Shahid et al., Electrochemical energy storage properties studies of Cu0.2Ni0.8O-reduced graphene oxide nano-hybrids. Ceram. Int. 46(9), 14304–14310 (2020). https://doi.org/10.1016/j.ceramint.2020.02.115

    Article  Google Scholar 

  25. F. Saffari, P. Kameli, M. Rahimi et al., Effects of co-substitution on the structural and magnetic properties of NiCoxFe2−xO4 ferrite nanoparticles. Ceram. Int. 41(6), 7352–7358 (2015). https://doi.org/10.1016/j.ceramint.2015.02.038

    Article  Google Scholar 

  26. A. Saini, P. Kumar, B. Ravelo et al., Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range. Eng. Sci. Technol. Int. J. 19(2), 911–916 (2016)

    Google Scholar 

  27. M.A. Yousuf, M.M. Baig, N.F. Al-Khalli et al., The impact of yttrium cations (Y3+) on structural, spectral and dielectric properties of spinel manganese ferrite nanoparticles. Ceram. Int. 45(8), 10936–10942 (2019). https://doi.org/10.1016/j.ceramint.2019.02.174

    Article  Google Scholar 

  28. K. Tanbir, M.P. Ghosh, R.K. Singh et al., Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31(1), 435–443 (2020)

    Article  Google Scholar 

  29. T. Shanmugavel, S.G. Raj, G.R. Kumar et al., Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. J. King Saud Univ. Sci. 27(2), 176–181 (2015). https://doi.org/10.1016/j.jksus.2014.12.006

    Article  Google Scholar 

  30. S. Yousaf, S. Zulfiqar, M.N. Shahi et al., Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Int. 46(3), 3750–3758 (2020). https://doi.org/10.1016/j.ceramint.2019.10.097

    Article  Google Scholar 

  31. F. Withers, T.H. Bointon, M.F. Craciun et al., All-graphene photodetectors. ACS Nano 7(6), 5052–5057 (2013). https://doi.org/10.1021/nn4005704

    Article  Google Scholar 

  32. C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6, 7959–7970 (2014). https://doi.org/10.1039/C4NR01730G

    Article  ADS  Google Scholar 

  33. A.R.O. Rodrigues, I.T. Gomes, B.G. Almeida et al., Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications. Phys. Chem. Chem. Phys. 17(27), 18011–18021 (2015). https://doi.org/10.1039/C5CP01894C

    Article  Google Scholar 

  34. M. Mushtaq, M. Imran, S. Baig et al., Synthesis, structural and biological studies of cobalt ferrite nanoparticles. Bulg. Chem. Commun. 48, 3–565 (2015)

    Google Scholar 

  35. K.M.F. Shahil, A.A. Balandin, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1021/nl203906r

    Article  ADS  Google Scholar 

  36. N.-U. Ain, W. Shaheen, B. Bashir et al., Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation. Ceram. Int. 42, 12401–12408 (2016). https://doi.org/10.1016/j.ceramint.2016.04.179

    Article  Google Scholar 

  37. A.S. Hassanien, A.A. Ak, A.H. Saaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1xO nanoparticles prepared by sol–gel technique. CrystEngComm 20, 1716–1730 (2018)

    Article  Google Scholar 

  38. A.A. Akl, S.A. Mahmoud, S.M. Al-Shomar, A.S. Hassanien, Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater. Sci. Semicond. Process. 74C, 183–192 (2018)

    Article  Google Scholar 

  39. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149, 1919–1923 (2009)

    Article  ADS  Google Scholar 

  40. W.S. Mohamed, A.M. Abu-Dief, Synthesis, characterization and photocatalysis enhancement of Eu2O3–ZnO mixed oxide nanoparticles. J. Phys. Chem. Solids. 116, 375–385 (2018)

    Article  ADS  Google Scholar 

  41. A.M. Abu-Dief, W.S. Mohamed, α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Mater. Res. Express 4, 035039 (2017)

    Article  ADS  Google Scholar 

  42. S. Aman, N. Ahmad, M.H. Alhossainy, H. Albalawi, M. Morsi, T.I. Al-Muhimeed, A.A. AlObaid, Structural, magnetic, electrical and microwave properties of spinel ferrites. J. Rare Earths (2021). https://doi.org/10.1016/j.jre.2021.04.015

    Article  Google Scholar 

  43. S. Aman, M.B. Tahir, N. Ahmad, The enhanced electrical and dielectric properties of cobalt-based spinel ferrites for high-frequency applications. J. Mater. Sci. Mater. Electron. 32, 22440–22449 (2021). https://doi.org/10.1007/s10854-021-06730-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taharh Zelai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelai, T. Structural and magnetic properties of samarium-substituted spinel ferrites. Appl. Phys. A 127, 864 (2021). https://doi.org/10.1007/s00339-021-05002-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05002-w

Keywords

Navigation