Skip to main content

Advertisement

Log in

Microscopic mechanisms of filament growth in memristor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The growth of a filament in an oxide medium with top electrode of Ag and bottom electrode of Pt is analyzed by considering the microscopic processes. The filament, either made up of Ag metal ions or oxygen vacancies, is considered to nucleate at the interface and grow under the influence of the applied electric field and injection of the defects from the interface. The flux of current is used to calculate the joule heating and the resulting temperature change in the filament after solving the thermal diffusion equation. In addition, the concentration of defects in the filament is evaluated from the equilibrium concentration and the loss of defects from the filament using the analytical solution to the mass diffusion equation. The rise in temperature, the concentration of defects, electrical current carried, and the height and radius of the filament are determined for several increments in time. The results showed that the growth of the filament is a complex process dependent on the several interdependent parameters. The important parameters are the initial concentration of defects, the applied voltage, activation energy for atomic jumps, free energy of formation of defects and the activation energy for diffusion. The numerical results are presented for ZnO with Ag top electrode and Pt bottom electrode by considering different choices of the parameters to illustrate their relative importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Available from the author.

References

  1. J.S. Lee, S. Lee, T.W. Noh, Appl. Phys. Rev. 2, 031303 (2015)

    Article  ADS  Google Scholar 

  2. M. N. Kozicki, M. Mitkova and I. Valov, in ‘Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications’, Ch. 17, p. 483, Ed. D. Ielmini and R. Waser, Wiley-VCH Verlag GmbH & Co., KGaA, 2016.

  3. K. Jagannadham, J. Appl. Phys. 126, 244501 (2020)

    Article  ADS  Google Scholar 

  4. J. Yao, L. Zhong, D. Natelson, J.M. Tour, Nat. Sci. Rep. 2, 242 (2012)

    Article  ADS  Google Scholar 

  5. K. Szot, R. Dittman, W. Speier, R. Waser, Phys. Stat. Solidi RRL 1, R86 (2007)

    Article  Google Scholar 

  6. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 3573 (2010)

    Article  Google Scholar 

  7. G. Dearnale, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)

    Article  ADS  Google Scholar 

  8. J.-Y. Chen, C.-L. Hsin, C.-W. Huang, S.-J. Lin, W.-W. Wu, L.-J. Chen, Nano Lett. 13, 3671 (2013)

    Article  ADS  Google Scholar 

  9. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U. Jung, S. Seo, M.-J. Lee, C.S. Hwang, Adv. Mater. 25, 1987 (2013)

    Article  Google Scholar 

  10. J.S. Lee, S.B. Lee, B. Kahng, T.W. Noh, Appl. Phys. Lett. 102, 253503 (2013)

    Article  ADS  Google Scholar 

  11. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  12. D.B. Strukov, R.S. Williams, Appl. Phys. A: Mater. Sci. Process. 94, 515 (2009)

    Article  ADS  Google Scholar 

  13. D.S. Jeong, B.J. Choi, C.S. Huang, J. Appl. Phys. 100, 113724 (2006)

    Article  ADS  Google Scholar 

  14. W. Wang, M. Wang, E. Ambrosi, A. Bricalli, M. Laudato, Z. Sun, X. Chen, D. Ielmini, Nat. Commun. 10, 81 (2019)

    Article  ADS  Google Scholar 

  15. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Nat. Mat. 16, 101 (2017)

    Article  Google Scholar 

  16. B.-G. Chae, J.-B. Seol, J.-H. Song, K. Baek, S.-H. Oh, H. Hwang, C.G. Park, Adv. Mater. 29, 1701752 (2017)

    Article  Google Scholar 

  17. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nat. Commun. 9, 1771 (2013)

    Article  ADS  Google Scholar 

  18. A. Vojta, D.R. Clarke, J. Appl. Phys. 83, 5632 (1998)

    Article  ADS  Google Scholar 

  19. I. Valov, G. Staikov, J. Solid State Electrochem. 17, 365 (2013)

    Article  Google Scholar 

  20. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, UK, 1948).

    MATH  Google Scholar 

  21. S. Yu, H.-S.P. Wong, IEEE Trans. Electr. Dev. 58, 1352 (2011)

    Article  ADS  Google Scholar 

  22. Y. Xu, M. Goto, R. Kato, Y. Tanaka, Y. Kagawa, J. Appl. Phys. 111, 084320 (2012)

    Article  ADS  Google Scholar 

  23. Z.X. Huang, Z.A. Tang, J. Yu, S. Bai, Physica B 406, 818 (2011)

    Article  ADS  Google Scholar 

  24. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.-K. Xue, X. Du, Phys. Rev. 93 B, 235305 (2016)

    Article  ADS  Google Scholar 

  25. T. Wang, P.D. Bristowe, Acta Materilia 137, 115 (2017)

    Article  ADS  Google Scholar 

  26. P.G. Shewmon, Diffusion in Solids (TMS Publications, Warrendale, PA, USA, 1972).

    Google Scholar 

  27. J.P. Hirth, J. Lothe, Theory of Dislocations (Krieger Publishing, New York, 1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannadham, K. Microscopic mechanisms of filament growth in memristor. Appl. Phys. A 127, 229 (2021). https://doi.org/10.1007/s00339-021-04367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04367-2

Keywords

Navigation