Skip to main content
Log in

Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The impact of the electrochemical nucleation on the switching kinetics in many nanoscaled redox-based resistive switching memories is critically discussed. In the case of the atomic switch, the system is site invariant and the nucleation process is strictly localized below the STM tip. Using RbAg4I5 solid electrolyte, nucleation was found to be rate limiting. The electrochemical metallization memory cells (gapless type atomic switch) operate at conditions closer to the conventional nucleation. They introduce additional difficulties for interpretation of the experimental results due to formation of hillocks, of surface oxide barrier films, induction of strain, and the influence of the high electric field. In valence change memories, the nucleation seems to be less important because of the higher applied voltages. The results are discussed in the context of the atomistic theory of electrochemical nucleation. We believe that re-analysis of the experimental data for many systems will reveal that the nucleation is limiting the switching time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Waser R (ed) (2012) Nanoelectronics and information technology (3rd edition). Wiley, Weinheim

    Google Scholar 

  2. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840

    Article  CAS  Google Scholar 

  3. Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663

    Article  CAS  Google Scholar 

  4. Valov I, Waser R, Jameson JR, Kozicki MN (2011) Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22:254003

    Article  Google Scholar 

  5. Hasegawa T, Terabe K, Tsuruoka T, Aono M (2012) Atomic switch: atom/ion movement controlled devices for beyond Von-Neumann computers. Adv Mater 24:252–267

    Article  CAS  Google Scholar 

  6. Fletcher S, Halliday C, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem 159:267–285

    Article  CAS  Google Scholar 

  7. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64:209–223

    Article  Google Scholar 

  8. Chua LO (2011) Resistance switching memories are memristors. Appl Phys A-Mater Sci Process 102:765–783

    Article  CAS  Google Scholar 

  9. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  CAS  Google Scholar 

  10. Fölling S, Türel Ö, Likharev K (2001) Single-electron latching switches as nanoscale synapses. Proc IJCNN’01 216–221

  11. Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski JK, Aono M (2011) Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 10:591–595

    Article  CAS  Google Scholar 

  12. Wuttig M, Yamada N (2007) Phase change materials for rewriteable data storage. Nat Mater 6:824

    Article  CAS  Google Scholar 

  13. Adler D, Shur MS, Silver M, Ovshinsky SR (1980) Threshold switching in chalcogenide-glass thin films. J Appl Phys 51:3289–3309

    Article  CAS  Google Scholar 

  14. Karpov VG, Kryukov YA, Mitra M, Karpov IV (2008) Crystal nucleation in glasses of phase change memory. J Appl Phys 104:054507

    Article  Google Scholar 

  15. Park GS, Li XS, Kim DC, Jung RJ, Lee MJ, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103

    Article  Google Scholar 

  16. Szot K, Speier W, Bihlmayer G, Waser R (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312–320

    Article  CAS  Google Scholar 

  17. Lee MJ, Lee CB, Lee D, Lee SR, Chang M, Hur JH, Kim YB, Kim CJ, Seo DH, Seo S, Chung UI, Yoo IK, Kim K (2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat Mater 10:625–630

    Article  CAS  Google Scholar 

  18. Strachan JP, Medeiros-Ribeiro G, Yang JJ, Zhang MX, Miao F, Goldfarb I, Holt M, Rose V, Williams RS (2011) Spectromicroscopy of tantalum oxide memristors. Appl Phys Lett 98:242114

    Article  Google Scholar 

  19. Terabe K, Hasegawa T, Nakayama T, Aono M (2005) Quantized conductance atomic switch. Nature 433:47–50

    Article  CAS  Google Scholar 

  20. Valov I, Sapezanskaia I, Nayak A, Tsuruoka T, Bredow T, Hasegawa T, Staikov G, Aono M, Waser R (2012) Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat Mater 11:530–535

    Article  CAS  Google Scholar 

  21. Nayak A, Tsuruoka T, Terabe K, Hasegawa T, Aono M (2011) Switching kinetics of a Cu2S-based gap-type atomic switch. Nanotechnology 22:235201

    Article  Google Scholar 

  22. Nayak A, Tamura T, Tsuruoka T, Terabe K, Hosaka S, Hasegawa T, Aono M (2010) Rate-limiting processes determining the switching time in a Ag2S atomic switch. J Phys Chem Lett 1:604–608

    Article  CAS  Google Scholar 

  23. Morales-Masis M, van der Molen SJ, Hasegawa T, van Ruitenbeek JM (2011) Bulk and surface nucleation processes in Ag2S conductance switches. Phys Rev B 84:115310

    Article  Google Scholar 

  24. Ohnishi H, Kondo Y, Takayanagi K (1998) Quantized conductance through individual rows of suspended gold atoms. Nature 395:780–783

    Article  CAS  Google Scholar 

  25. Milchev A, Stoyanov S, Kaischev R (1974) Atomistic theory of electrolytic nucleation: I. Thin Solid Films 22:255–265

    Article  CAS  Google Scholar 

  26. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer, Dordrecht

    Google Scholar 

  27. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, Weinhein

    Book  Google Scholar 

  28. Schindler C, Staikov G, Waser R (2009) Electrode kinetics of Cu-SiO2-based resistive switching cells: overcoming the voltage-time dilemma of electrochemical metallization memories. Appl Phys Lett 94:072109–3

    Article  Google Scholar 

  29. Tsuruoka T, Terabe K, Hasegawa T, Aono M (2011) Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch. Nanotechnology 22:254013

    Article  Google Scholar 

  30. Soni R, Meuffels P, Staikov G, Weng R, Kuegeler C, Petraru A, Hambe M, Waser R, Kohlstedt H (2011) On the stochastic nature of resistive switching in Cu doped Ge0. 3Se0. 7 based memory devices. J Appl Phys 110:54509

    Article  Google Scholar 

  31. Russo U, Kamalanathan D, Ielmini D, Lacaita AL, Kozicki MN (2009) Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans Electron Devices 56:1040–1047

    Article  CAS  Google Scholar 

  32. Tappertzhofen S, Valov I, Waser R (2012) Quantum conductance and switching kinetics of AgI based microcrossbar cells. Nanotechnology 23:145703

    Article  CAS  Google Scholar 

  33. Hermes C, Wimmer M, Menzel S, Fleck K, Bruns G, Salinga M, Boettger U, Bruchhaus R, Schmitz-Kempen T, Wuttig M, Waser R (2011) Analysis of transient currents during ultra fast switching of TiO2 nanocrossbar devices. IEEE Electron Device Lett 32:1116–1118

    Article  CAS  Google Scholar 

  34. Menzel S, Waters M, Marchewka A, Böttger U, Dittmann R, Waser R (2011) Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv Funct Mater 21:4487–4492

    Article  CAS  Google Scholar 

  35. Ielmini D (2012) Evidence for voltage-driven set/reset processes. IEEE Trans Electron Devices 59:2049–2055

    Article  CAS  Google Scholar 

  36. Cao JL, Solbach A, Klemradt U, Weirich T, Mayer J, Horn-Solle H, Bottger U, Schorn PJ, Schneller T, Waser R (2006) Structural investigations of Pt/TiOx electrode stacks for ferroelectric thin film devices. J Appl Phys 99:114107

    Article  Google Scholar 

  37. Jung WW, Choi SK, Kweon SY, Yeom SJ (2003) Platinum (100) hillock growth in a Pt/Ti electrode stack for ferroelectric random access memory. Appl Phys Lett 83:2160–2162

    Article  CAS  Google Scholar 

  38. Tappertzhofen S, Menzel S, Valov I, Waser R (2011) Redox processes in silicon dioxide thin films using copper microelectrodes. Appl Phys Lett 99:203103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Valov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valov, I., Staikov, G. Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J Solid State Electrochem 17, 365–371 (2013). https://doi.org/10.1007/s10008-012-1890-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1890-5

Keywords

Navigation