Skip to main content
Log in

Silver nanoparticles in natural zeolites incorporated into commercial coating: antibacterial study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, silver nanoparticles on chabazite, clinoptilolite, and clinoptilolite-stilbite natural zeolites were synthesized. The nanomaterials were incorporated into commercial coatings and afterward, the antibacterial activity was carried out. The zeolites were exposed to the activation step before the ion-exchange process with the precursor. The optical properties of the nanoparticles were studied through UV–Vis and FT-IR spectroscopy. Morphological and structural parameters were analyzed through TEM microscopy. The particle size of about 2–20 nm with spherical approach morphologies was obtained. Using XPS spectroscopy, the silver oxidation state was determined. The obtained nanomaterials showed antibacterial activity after their incorporation into the coatings. For this analysis, the Kirby-Bauer method was performed, studying the material against E. coli ATCC 25,922, K. pneumoniae ATCC 25,955, and K. pneumoniae ESBL + bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Singh, A.A.S. Gill, M. Nlooto, R. Karpoormath, Prostate cancer biomarkers detection using nanoparticles based electrochemical biosensors. Biosensors Bioelectron 137, 213–221 (2019)

    Article  Google Scholar 

  2. H. Nagar, N. Sahu, V.V. Basava Rao, S. Sridhar, Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell. Renewable Energy 146, 1262–1277 (2020)

    Article  Google Scholar 

  3. R.M. Pallares, N.T.K. Thanh, X. Su, Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 11, 22152–22171 (2019)

    Article  Google Scholar 

  4. M. Manzano, M. Vallet‐Regí, Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 1902634, (2019)

  5. S.M. Dadfara, K. Roemhild, N.I. Drude, S. Stillfried, R. Knüchel, F. Kiessling, T. Lammers, Adv. Drug Delivery Rev. 138, 302–325 (2019)

    Article  Google Scholar 

  6. A.W. Petrov, D. Ferri, O. Kröcher, J.A. van Bokhoven, Design of stable palladium-based zeolite catalysts for complete methane oxidation by postsynthesis zeolite modification. ACS Catal. 9(3), 2303–2312 (2019)

    Article  Google Scholar 

  7. J. Vergara-Figueroa, S. Alejandro-Martín, H. Pesenti, F. Cerda, A. Fernández-Pérez, W. Gacitúa, Obtaining nanoparticles of Chilean natural zeolite and its ion exchange with copper salt (Cu2+) for antibacterial applications. Materials 12, 2202 (2019)

    Article  ADS  Google Scholar 

  8. X. Lin, J. Lin, C. Zeng, J. Niu, R. Chenna Krishna Reddy, J. Liu, Y. Cai, Z. Yuan, J. Colloid Interface Sci. 565, 156–166 (2020)

    Article  ADS  Google Scholar 

  9. C. Carrillo-Carrión, R. Martínez, M.F. Navarro Poupard, B. Pelaz, E. Polo, A. Arenas-Vivo, A. Olgiati, P. Taboada, M.G. Soliman, Ú. Catalán, S. Fernández-Castillejo, R. Solà, W.J. Parak, P. Horcajada, R.A. Alvarez-Puebla, P. del Pino, Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angewandte Chemie Int. Edition 58, 7078–7082 (2019)

    Article  Google Scholar 

  10. K. Wang, M. Dong, J. Li, P. Liu, K. Zhang, J. Wang, W. Fan, Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics. Catal. Sci. Technol. 7, 560–564 (2017)

    Article  Google Scholar 

  11. Q. Sun, N. Wang, Yu. Risheng Bai, T.Z. Hui, D.A. Do, P. Zhang, L. Song, S. Miao, Yu. Jihong, Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Adv. Sci. 6, 1802350 (2019)

    Article  Google Scholar 

  12. M. Moliner, J.E. Gabay, C.E. Kliewer, R.T. Carr, J. Guzman, G.L. Casty, P. Serna, A. Corma, Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016)

    Article  Google Scholar 

  13. H. Derikvandi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catalysis A Chem. 426(PART A), 158–169 (2017)

    Article  Google Scholar 

  14. D. Lin, H. Zhu, Wu. Yining, Lu. Teng, Y. Liu, X. Chen, C. Peng, C. Yang, X. Feng, Morphological insights into the catalytic aquathermolysis of crude oil with an easily prepared high-efficiency Fe3O4-containing catalyst. Fuel 245, 420–428 (2019)

    Article  Google Scholar 

  15. P. Sánchez-López, Y. Kotolevich, S. Miridonov, F. Chávez-Rivas, S. Fuentes, V. Petranovskii, Bimetallic AgFe Systems on Mordenite: effect of cation deposition order in the NO reduction with C3H6/CO. Catalysts 9, 58 (2019)

    Article  Google Scholar 

  16. M. Nasrollahzadeh, T. Baran, N. Yılmaz Baran, M. Sajjadi, M.R. Tahsili, M. Shokouhimehr, Pd nanocatalyst stabilized on amine-modified zeolite: antibacterial and catalytic activities for environmental pollution remediation in aqueous medium. Sep. Purif. Technol. 239, 116542 (2020)

    Article  Google Scholar 

  17. V.S. Gurina, V.P. Petranovskii, M.-A. Hernandez, N.E. Bogdanchikova, A.A. Alexeenko, Silver and copper clusters and small particles stabilized within nanoporous silicate-based materials. Mater. Sci. Eng., A 391, 71–76 (2005)

    Article  Google Scholar 

  18. Hu. Xiaosong, J. Bai, H. Hong, C. Li, Supercritical carbon dioxide anchored highly dispersed silver nanoparticles on 4A-zeolite and selective oxidation of styrene performance. CrystEngComm 18, 2469–2476 (2016)

    Article  Google Scholar 

  19. A. GhavamiNejad, A. Kalantarifard, G.S. Yang, C.S. Kim, In-situ immobilization of silver nanoparticles on ZSM-5 type zeolite by catechol redox chemistry, a green catalyst For A3-coupling reaction. Microporous Mesoporous Mater. 225, 296–302 (2016)

    Article  Google Scholar 

  20. J. Milenkovic, J. Hrenovic, D. Matijasevic, M. Niksic, N. Rajic, Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ Sci Pollut Res 24, 20273–20281 (2017)

    Article  Google Scholar 

  21. M.I. Panayotova, N.N. Mintcheva, O.T. Gemishev, G.T. Tyuliev, G.D. Gicheva, L.P. Djerahov, Preparation and antimicrobial properties of silver nanoparticles supported by natural zeolite clinoptilolite. Bul. Chem. Commun. 50, 211–218 (2018)

    Google Scholar 

  22. A. Amirjani, D.H. Fatmehsari, Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta 176, 242–246 (2018)

    Article  Google Scholar 

  23. NG Mlalila, HS Swai, A Hilonga, DM Kadam, Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli, Nanotechnol. Sci. Appl. 10: 1–9, (2017)

  24. J.R. Koduru, S.K. Kailasa, J.R. Bhamore, K.-H. Kim, T. Dutta, K. Vellingiri, Adv. Colloid Interface Sci. 256, 326–339 (2018)

    Article  Google Scholar 

  25. R. Rafique, S.K. Kailasa, T.J. Park, TrAC Trends Anal. Chem. 120, 115646 (2019)

    Article  Google Scholar 

  26. M. Ashrafizadeh, R. Mohammadinejad, S.K. Kailasa, Z. Ahmadi, E.G. Afshar, A. Pardakhty, Adv. Colloid Interface Sci. 278, 102123 (2020)

    Article  Google Scholar 

  27. G.E. Machado, A.M. Pereyra, V.G. Rosato, M.S. Moreno, E.I. Basaldella, Improving the biocidal activity of outdoor coating formulations by using zeolite-supported silver nanoparticles. Mater. Sci. Eng., C 98, 789–799 (2019)

    Article  Google Scholar 

  28. M. Li, L. Gao, C. Schlaich, J. Zhang, I.S. Donskyi, Yu. Guozhi, W. Li, Tu. Zhaoxu, J. Rolff, T. Schwerdtle, R. Haag, N. Ma, Construction of functional coatings with durable and broad-spectrum antibacterial potential based on mussel-inspired dendritic polyglycerol and in situ-formed copper nanoparticles. ACS Appl. Mater. Interfaces 40, 35411–35418 (2017)

    Article  Google Scholar 

  29. D. Jiraroj, S. Tungasmita, D.N. Tungasmita, Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technol. 264, 418–422 (2014)

    Article  Google Scholar 

  30. L. Mpenyana-Monyatsi, N.H. Mthombeni, M.S. Onyango, M.N.B. Momba, Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int. J. Environ. Res. Public Health 9, 244–271 (2012)

    Article  Google Scholar 

  31. B. Galeano, E. Korff, WL Nicholson, Inactivation of Vegetative Cells, but Not Spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless Steel Surfaces Coated with an Antimicrobial Silver- and Zinc-Containing Zeolite Formulation, applied and Environmental Microbiology, 4329–4331, (2003)

  32. J.F. Román-Zamorano, M. Flores-Acosta, H. Arizpe-Chávez, F.F. Castillón-Barraza, M.H. Farías, R. Ramírez-Bon, Structure and properties of lead and lead sulfide nanoparticles in natural zeolite. J. Mater. Sci. 44, 4781–4788 (2009)

    Article  ADS  Google Scholar 

  33. N.S. Flores-Lopez, Nanopartículas de Ag en Zeolitas A4 y Chabazita. Professional thesis. Centro de Investigación en Materiales Avanzados, S. C. 13, 34

  34. N.S. Flores-López, J. Castro-Rosas, R. Ramírez-Bon, A. Mendoza-Córdova, E. Larios-Rodríguez, M. Flores-Acosta, Synthesis and properties of crystalline silver nanoparticles supported in natural zeolite chabazite. J. Mol. Struct. 1028, 110–111 (2012)

    Article  ADS  Google Scholar 

  35. E. Torres, Síntesis de Nanopartículas de Plata en Chabazita, para la Elaboración de Recubrimientos Bactericidas. Tesis profesional. Universidad de Sonora. 15–46, (2016)

  36. M. John, S. William, B.K. Sobol Peter, Handbook of X-ray Photoelectron Spectroscopy. Edited by Jill Chastain. Minnesota, E.U.A. Perkin-Elmer Corporation. 120–121, (1993)

  37. M.D. Martínez de Yuso García, Aplicaciones de la Espectroscopía Fotoelectrónica de Rayos X en la Caracterización de Materiales Funcionales. Facultad de Ciencias. Universidad de Málaga. 7–8, (2015)

  38. Á.B. Sifontes, L. Melo, C. Maza, J.J. Mendes, M. Mediavilla, Preparación de Nanopartículas de Plata en Ausencia de Polimeros Estabilizantes. Química Nova 33(6), 1266–1269 (2010)

    Article  Google Scholar 

  39. G.A.C.M. Spierings, Optical absorption of Ag+ ions in 11(Na, Ag)2O · 11B2O3 · 78SiO2 glass. J. Non-Cryst. Solids 94, 407–411 (1987)

    Article  ADS  Google Scholar 

  40. G. Barcaro, M. Broyer, N. Durante, A. Fortunelli, M. Stener, Alloying effects on the optical properties of Ag-Au nanoclusters from TDDFT calculations. J. Phys. Chem. C 115, 24085–24091 (2011)

    Article  Google Scholar 

  41. K. Natarajan, S. Selvaraj, V.R. Murty, Microbial production of silver nanoparticles. Digest J Nanomater Biostruct 5, 135–140 (2010)

    Google Scholar 

  42. H. Lee, G. Ro, J.M. Kim, Y. Kim, Discrete-dipole approximation for the optical properties with morphological changes of silver nanoprism and nanosphere via galvanic reaction. Mater. Lett. 209, 138–141 (2017)

    Article  Google Scholar 

  43. D.H. Kim, J.C. Park, G.E. Jeon, C.S. Kim, J.H. Seo, Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioprocess Eng. 22, 210–217 (2017)

    Article  Google Scholar 

  44. A.L. González, C. Noguez, Influence of morphology on the optical properties of metal nanoparticles. J Comput Theoretical Nanosci. 4, 231–238 (2007)

    Article  Google Scholar 

  45. L.B. Gulina, G. Korotcenkov, B.K. Cho, S.H. Han, V.P. Tolstoy, Ag nanoclusters synthesized by successive ionic layer depositionmethod and their characterization. J Mater Sci 46, 4555–4561 (2011)

    Article  ADS  Google Scholar 

  46. F. Collins, A. Rozhkovskaya, J.G. Outram, G.J. Millar, A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous Mesoporous Mater. 291, 109667 (2020)

    Article  Google Scholar 

  47. J. Singh, R.L. White, A variable temperature infrared spectroscopy study of NaA zeolite dehydration. Vib. Spectrosc. 94, 37–42 (2018)

    Article  Google Scholar 

  48. M. Król, W. Mozgawa, W. Jastrzebski, K. Barczyk, Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous Mesoporous Mater. 156, 181–188 (2012)

    Article  Google Scholar 

  49. N.N. Safie, A.Z. Yaser, N. Hilal, Ammonium ion removal using activated zeolite and chitosan. Asia-Pac J Chem Eng. 15, e2448 (2020)

    Article  Google Scholar 

  50. M.R. Abukhadra, S.M. Ibrahima, S.M. Yakout, M.E. El-Zaidy, A.A. Abdeltawab, Synthesis of Na+ trapped bentonite/zeolite-P composite as a novel catalyst for effective production of biodiesel from palm oil; effect of ultrasonic irradiation and mechanism. Energy Conversion Manage. 196, 739–750 (2019)

    Article  Google Scholar 

  51. M. Nabiollah, N. Rikhtegar, H.A. Panahi, A. Farideh, B.K. Shahraki, Porosity, characterization and structural properties of natural zeolite—clinoptilolite—as a sorbent. Environ. Protect. Eng. 39, 139–152 (2013)

    Google Scholar 

  52. A.D. Montes-Luna, N.C. Fuentes-López, Y.A. Perera-Mercado, O. Pérez-Camacho, G. Castruita-de León, S.P. García-Rodríguez, M. García-Zamora, Caracterización de Clinoptilolita Natural y Modificada con Ca2+ por Distintos Métodos Físico-Químicos para su Posible Aplicación en Procesos de Separación de Gases. Sociedad Mexicana Ciencia Tecnología Superficies Materiales. 28, 5–11 (2015)

    Google Scholar 

  53. T.M. Piqué, A. Vázquez, Uso de Espectroscopía Infrarroja con Transformada de Fourier (FTIR) en el Estudio de la Hidratación del Cemento. Concreto Y Cemento. Investigación Y Desarrollo 3, 62–71 (2012)

    Google Scholar 

  54. D. Novgorodova, A. Gorshkov, A. Mokhov, Standard X-ray diffraction powder patterns. Zap. Vses. Mineral. O-va. 108, 552–554 (1979)

    Google Scholar 

  55. M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M.V. Hoek, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir 25, 10139–10145 (2009)

    Article  Google Scholar 

  56. E. Kolobova, A. Pestryakov, G. Mamontov, Y. Kotolevich, N. Ogdanchikova, M. Farias, A. Vosmerikov, L. Vosmerikova, V. Cortes Corberan, Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel 188, 121–131 (2017)

    Article  Google Scholar 

  57. A. Nagy, A. Harrison, S. Sabbani, R.S. Munson Jr., P.K. Dutta, W.J. Waldman, Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int. J. Nanomed. 6, 1833–1852 (2011)

    Google Scholar 

  58. H. Khodabandehloo, H. Zahednasab, A.A. Hafez, Nanocarriers usage for drug delivery in cancer therapy, Iran. J. Cancer Prev. 9, e3966 (2016)

    Google Scholar 

  59. D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011)

    Article  Google Scholar 

  60. T. Miyanaga, H. Hoshino, H. Endo, Local structure of silver clusters in the channels of zeolite 4A. J. Synchrotron Rad. 8, 557–559 (2001)

    Article  Google Scholar 

  61. Y. Chai, W. Shang, W. Li, Wu. Guangjun, W. Dai, N. Guan, L. Li, Noble metal particles confined in zeolites: synthesis, characterization, and applications. Adv. Sci. 6, 1900299 (2019)

    Article  Google Scholar 

  62. M.J. Sánchez, J.E. Mauricio, A.R. Paredes, P. Gamero, D. Cortés, Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Mater. Lett. 191, 65–68 (2017)

    Article  Google Scholar 

  63. L. Zhu, S. Ye, A. Asghar, S.-H. Bang, Oh. Won-Chun, Additional effect of zeolite based on bactericidal activated carbon spheres with enhanced adsorption effect and higher ignition temperature. J. Korean Ceram. Soc. 53, 68–74 (2016)

    Article  Google Scholar 

  64. M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal Activity. Appl Nanosci 3, 217–223 (2013)

    Article  ADS  Google Scholar 

  65. A. Ávalos, A.I. Haza, D. Mateo, P. Morales, Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Rev Complutense Ciencias Veterinarias. 7, 1–23 (2013)

    Google Scholar 

  66. Y.H. Tan, Y. Chen, W.H.W. Chu, L.-T. Sham, Y.-H. Gan, Cell envelope defects of different capsule-null mutants in K1 hypervirulent Klebsiella pneumoniae can affect bacterial pathogenesis. Mol. Microbiol. 113, 889–905 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by project A1-S-46242 of the CONACYT Basic Science. The author M. Cortez-Valadez appreciates the support by “Cátedras CONACYT” program. Special thanks to the support brought by the Laboratory of Transmission Electron Microscopy at the University of Sonora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cortez-Valadez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Flores, E.I., Flores-López, N.S., Martínez-Núñez, C.E. et al. Silver nanoparticles in natural zeolites incorporated into commercial coating: antibacterial study. Appl. Phys. A 127, 71 (2021). https://doi.org/10.1007/s00339-020-04227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04227-5

Keywords

Navigation