Skip to main content
Log in

Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we demonstrate the antibacterial activity of silver nanoparticles (AgNPs), depending on their size and shape, on green fluorescent protein (GFP)-expressing E. coli, which provides a facile, rapid, and noninvasive monitoring system. By measuring optical density and fluorescence intensity in the recombinant E. coli, we found that smaller sized plate-shaped AgNPs presented higher antibacterial activity than larger sized, cubic and spherical AgNPs. In the case of 10 nm spherical AgNPs, the optical density was detectable at 15 ng/mL after 12 h incubation, but the fluorescence intensity was not. On the other hand, smaller-sized AgNPs showed higher toxicity than plate-shaped AgNPs based on the measurement of the optical density and fluorescence intensity. The combined analysis of optical density and fluorescence intensity may be helpful for understanding the effect of various materials, including nano- and organic materials, on recombinant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diederen, B. M. W. and J. Kluytmans (2006) The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. J. Infect. 52: 157–168.

    Article  CAS  Google Scholar 

  2. Strassert, C. A., M. Otter, R. Q. Albuquerque, A. Hone, Y. Vida, B. Maier, and L. De Cola (2009) Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria. Angew. Chem. Int. Ed. 48: 7928–7931.

    Article  CAS  Google Scholar 

  3. Li, X. N., S. M. Robinson, A. Gupta, K. Saha, Z. W. Jiang, D. F. Moyano, A. Sahar, M. A. Riley, and V. M. Rotello (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. Acs. Nano. 8: 10682–10686.

    Article  CAS  Google Scholar 

  4. Huh, A. J. and Y. J. Kwon (2011) “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control Rel. 156: 128–145.

    Article  CAS  Google Scholar 

  5. Hajipour, M. J., K. M. Fromm, A. A. Ashkarran, D. J. de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi (2012) Antibacterial properties of nanoparticles. Trends Biotechnol. 30: 499–511.

    Article  CAS  Google Scholar 

  6. Chernousova, S. and M. Epple (2013) Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 52: 1636–1653.

    Article  CAS  Google Scholar 

  7. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman (2005) The bactericidal effect of silver nanoparticles. Nanotechnol. 16: 2346–2353.

    Article  CAS  Google Scholar 

  8. Lu, Z., K. Rong, J. Li, H. Yang, and R. Chen (2013) Size-depen-dent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med. 24: 1465–1471.

    Article  CAS  Google Scholar 

  9. Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol. 3: 95–101.

    Article  CAS  Google Scholar 

  10. Bosetti, M., A. Masse, E. Tobin, and M. Cannas (2002) Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials 23: 887–892.

    Article  CAS  Google Scholar 

  11. Yoshida, K., M. Tanagawa, and M. Atsuta (1999) Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J. Biomed. Mater. Res. 47: 516–522.

    Article  CAS  Google Scholar 

  12. Liau, S. Y., D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell (1997) Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279–283.

    Article  CAS  Google Scholar 

  13. Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microb. 74: 2171–2178.

    Article  CAS  Google Scholar 

  14. Ivask, A., I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja, S. Suppi, H. Vija, A. Kakinen, T. Titma, M. Heinlaan, M. Visnapuu, D. Koller, V. Kisand, and A. Kahru (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. Plos One 9: e102108.

    Article  Google Scholar 

  15. Pal, S., Y. K. Tak, and J. M. Song (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 73: 1712–1720.

    Article  CAS  Google Scholar 

  16. Zimmer, M. (2002) Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chem. Rev. 102: 759–781.

    Article  CAS  Google Scholar 

  17. Bauer, A. W., W. M. M. Kirby, J. C. Sherries, and M. Tuck (2002) Antibiotic susceptibility testing by a standardized disc diffusion method. Am. J. Clin. Pathol. 45: 493–496.

    Google Scholar 

  18. Sosa, I. O., C. Noguez, and R. G. Barrera (2003) Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B. 107: 6269–6275.

    Article  CAS  Google Scholar 

  19. Li, W. R., X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. B. Chen (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85: 1115–1122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hyun Seo.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Park, J.C., Jeon, G.E. et al. Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol Bioproc E 22, 210–217 (2017). https://doi.org/10.1007/s12257-016-0641-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0641-3

Keywords

Navigation