Skip to main content
Log in

Structure and properties of lead and lead sulfide nanoparticles in natural zeolite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have synthesized lead and lead sulfide nanoparticles embedded in a natural zeolite (clinoptilolite) matrix by a simple hydrothermal process. The process steps involve the partial removing of the natural cations in clinoptilolite, the ion-exchange process to enclose Pb ions and nanoparticles and finally a sulfuration process at different temperatures to obtain lead sulfide phases in the zeolite matrix. The samples were studied by X-ray diffraction, diffuse reflectance spectroscopy, energy dispersive X-ray spectroscopy, X-ray photon spectroscopy and transmission electron microscopy. The experimental results show the inclusion of three Pb species with different valence states after the Pb ion-exchange step, namely Pb2+, Pb4+, and Pb0. At the end of the process, two simultaneous lead sulfide crystalline phases, PbS (Galena) and PbS2 (tetragonal) were synthesized in the clinoptilolite matrix. The optical absorption spectra of the samples show the exciton absorption peaks typical of colloidal PbS nanoparticles. The average size of the PbS nanoparticles was about 10 nm and their crystalline structure was determined from diffraction electron patterns. The high-pressure phase PbS2 was also identified and its formation was attributed to the influence of the special conditions of clinoptilolite matrix as crystallization media to induce some selective nucleation process of this crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faghihian H, Ghannadi Marageh M, Kazemian H (1999) Appl Radiat Isot 50:660

    Article  Google Scholar 

  2. Mondale KD, Carland RM, Aplan FF (1995) Min Eng 8:535

    Article  CAS  Google Scholar 

  3. Cerjan Stefanovic S, Zabukovec Logar N, Margeta K, Novak Tusar N, Arcon I, Maver K, Kovac J, Kaucic V (2007) Microporous Mesoporous Mater 105:251

    Article  CAS  Google Scholar 

  4. Dávila-Jiménez MM, Elizalde-González MP, Mattusch J, Morgenstern P, Pérez-Cruz MA, Reyes-Ortega Y, Wennrich R, Yee-Madeira H (2008) J Colloid Interface Sci 322:527

    Article  PubMed  Google Scholar 

  5. Erdem E, Karanipar N, Donat R (2004) J Colloid Interface Sci 280:309

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Herron N (1987) J Phys Chem 91:257

    Article  CAS  Google Scholar 

  7. Chen W, Wang ZG, Lin ZJ, Lin LY (1996) Solid State Commun 101:371

    Article  Google Scholar 

  8. Herron N (1995) J Incl Phenom Macrocycl Chem 21:283

    CAS  Google Scholar 

  9. Suzuki S, Ryo M, Yamamoto T, Sakata T, Yanagida S, Wada Y (2007) J Mater Sci 42:5995. doi:10.1007/s10853-006-1127-z

    Article  ADS  Google Scholar 

  10. Kadlecikova M, Breza J, Jesena K, Pastorkova K, Luptakova V, Kolmacka M, Vojackova A, Michalka M, Vavra I, Krizanova Z (2008) Appl Surf Sci 254:5073

    Article  ADS  CAS  Google Scholar 

  11. Li F, Suna S, Jiang Y, Xia M, Suna M, Xue B (2008) J Hazard Mater 152:1037

    Article  PubMed  CAS  Google Scholar 

  12. Sohrabnezhad S, Pourahmad A, Sadjadi MS, Zanjanchi MA (2008) Mater Sci Eng C 28:202

    Article  CAS  Google Scholar 

  13. Sadjadi MS, Pourahmad A, Sohrabnezhad S, Zare K (2007) Mater Lett 61:2923

    Article  CAS  Google Scholar 

  14. Iacomi F, Vasile A, Polychroniadis EK (2003) Mater Sci Eng B 101:275

    Article  Google Scholar 

  15. Martín-Palma RJ, Hernández-Vélez M, Díaz I, Villavicencio-García H, García-Poza MM, Martínez-Duart JM, Pérez-Pariente J (2001) Mater Sci Eng C 15:163

    Article  Google Scholar 

  16. Sotelo-Lerma M, Quevedo-López MA, Orozco-Terán RA, Ramírez-Bon R, Espinoza-Beltrán FJ (1998) J Phys Chem Solids 59:145

    Article  CAS  Google Scholar 

  17. Ochoa-Landín R, Flores-Acosta M, Ramírez-Bon R, Arizpe-Chávez H, Sotelo-Lerma M, Castillón-Barraza FF (2003) J Phys Chem Solids 64:2245

    Article  ADS  Google Scholar 

  18. Flores-Acosta M, Sotelo-Lerma M, Arizpe-Chávez H, Castillón-Barraza FF, Ramírez-Bon R (2003) Solid State Commun 136:567

    Article  ADS  Google Scholar 

  19. Xie R, Li D, Yang D, Jiang M (2007) J Mater Sci 42:1376. doi:10.1007/s10853-006-1211-4

    Article  ADS  CAS  Google Scholar 

  20. Wise FW (2000) Acc Chem Res 33:773

    Article  PubMed  CAS  Google Scholar 

  21. Efros AIL, Efros AL (1982) Fiz Tekh Poluprov 16:1209

    CAS  Google Scholar 

  22. Espiau R, Bernas H (2005) J Appl Phys 98:104310

    Article  ADS  Google Scholar 

  23. Wang Y, Suna A, Mahler W, Kasowski R (1987) J Chem Phys 87:7315

    Article  ADS  CAS  Google Scholar 

  24. Asunskis DJ, Boloti IL, Hanley L (2008) J Phys Chem C 112:9555

    Article  CAS  Google Scholar 

  25. Zhang Y, Xu Z (2008) Appl Phys Lett 93:083106

    Article  ADS  Google Scholar 

  26. Kraus TD, Wise FW (1997) Phys Rev B 55:9860

    Article  ADS  Google Scholar 

  27. Zhao X-S, Xu S-Y, Liang L-Y, Li T, Cauchi S (2007) J Mater Sci 42:4265. doi:10.1007/s10853-006-0679-2

    Article  ADS  CAS  Google Scholar 

  28. Chen W, Wang Z, Lin Z, Qian J, Lin L (1990) Appl Phys Lett 68:91998

    Google Scholar 

  29. Leiggener C, Calzaferri G (2005) Chem A Eur J 11:7191

    Article  CAS  Google Scholar 

  30. Kostic R, Romcevic M, Romcevic N, Klopotowski L, Kossut J, Kuljanin J, Comor MI, Nedeljkovic JM (2008) Opt Mater 30:1177

    Article  ADS  CAS  Google Scholar 

  31. Rodríguez-Iznaga I, Gómez A, Rodríguez-Fuentes G, Benítez-Aguilar A, Serrano-Bayan J (2002) Microporous Mesoporous Mater 53:71

    Article  Google Scholar 

  32. Perraki T, Orfanoudaki A (2004) Appl Clay Sci 25:9

    Article  CAS  Google Scholar 

  33. Elaiopoulos K, Perraki Th, Grigoropoulou E (2008) Microporous Mesoporous Mater 112:441

  34. Lee Y, Carr SW, Parised J (1998) Chem Mater 10:2561

    Article  CAS  Google Scholar 

  35. Fuggle JC, Martensson N (1980) J Electron Spectrosc Relat Phenom 21:275

    Article  CAS  Google Scholar 

  36. Liu Z, Guo B, Tay SW, Hong L, Zhang X (2008) J Power Sources 184:16

    Article  CAS  Google Scholar 

  37. Ganguly P, Hedge MS (1988) Phys Rev B 37:5107

    Article  ADS  Google Scholar 

  38. Soto G, Díaz JA, Machorro R, Reyes-Serrato A, de la Cruz W (2002) Mater Lett 52:29

    Article  CAS  Google Scholar 

  39. Henglein A (1999) J Phys Chem B 103:9302

    Article  CAS  Google Scholar 

  40. Henglein A, Holzwarth A, Mulvaney P (1992) J Phys Chem 96:8700

    Article  CAS  Google Scholar 

  41. Mulvaney P (1996) Langmuir 12:788

    Article  CAS  Google Scholar 

  42. Fernee MJ, Watt A, Warner J, Heckenberg N, Rubinsztein-Dunlop H (2004) Nanotech 15:1328

    Article  ADS  CAS  Google Scholar 

  43. Fernee MJ, Watt A, Warner J, Cooper S, Heckenberg N, Rubinsztein-Dunlop H (2003) Nanotech 14:991

    Article  ADS  CAS  Google Scholar 

  44. Cademartiri L, Montanari E, Calestani G, Migliori A, Guagliardi A, Ozin GA (2006) J Am Chem Soc 128:10337

    Article  PubMed  CAS  Google Scholar 

  45. Peterson JJ, Krauss TD (2006) Phys Chem Chem Phys 8:3851

    Article  CAS  Google Scholar 

  46. Song Li L, Qu L, Wang L, Lu R, Peng X, Zhao Y, Li T (1997) Langmuir 13:6183

    Article  Google Scholar 

  47. Flores-Acosta M, Pérez-Salas R, Sotelo-Lerma M, Castillón-Barraza FF, Ramírez-Bon R (2005) Adv Tech Mater Mater Process J 7:101

    CAS  Google Scholar 

  48. Pitcher MW, Cates E, Raboin L, Bianconi PA (2000) Chem Mater 12:1738

    Article  CAS  Google Scholar 

  49. Wheeler KT, Walker D, Johnson MC (2007) Am J Sci 307:590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the technical assistance of Jesús Antonio Díaz, J. E. Urbina, M. A. Hernández L. and E. Larios. F:F. Castillón-Barraza also acknowledges to CONACyT and DGAPA-UNAM for research grants 50547 and IN110208-3, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramírez-Bon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Román-Zamorano, J.F., Flores-Acosta, M., Arizpe-Chávez, H. et al. Structure and properties of lead and lead sulfide nanoparticles in natural zeolite. J Mater Sci 44, 4781–4788 (2009). https://doi.org/10.1007/s10853-009-3720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3720-4

Keywords

Navigation