Skip to main content
Log in

Epitaxial characteristics of MBE-grown ZnTe thin films on GaAs (211)B substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly crystalline ZnTe thin films were grown on GaAs (211)B substrates by molecular beam epitaxy (MBE) for potential applications such as MCT detectors and optoelectronic devices. We investigated the effects of Te to Zn (VI/II) flux ratio on the quality of ZnTe films in terms of crystal orientation, elemental composition, surface roughness, and dislocation density. Atomic concentrations of Zn, Te, and oxygen complexes due to oxygen contamination on the film surfaces were analyzed by X-ray photoelectron spectroscopy. X-ray double crystal rocking curve full width half maximum (FWHM) of ZnTe (422) peak was observed as 233 arcseconds for a 1.66 μm thick film, which indicates high crystallinity. Wet chemical etching was applied to the films to quantify the crystal quality by calculating etch pit densities (EPD) from scanning electron microscope images. A very low EPD value of 1.7 × 107 cm−2 was measured. Additionally, the root mean square roughness values, obtained from atomic force microscopy topography images were in the range of 10–25 nm. These values were supported by FWHM values of red green blue color intensity histograms obtained from Nomarski Microscope images. The results of our analyses indicate that the VI/II flux ratios of 4 and 4.5 produce the best quality ZnTe films on GaAs (211)B substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Ouyang, J. Fan, S. Wang, X. Lu, Y.H. Zhang, X. Liu, J.K. Furdyna, D.J. Smith, J. Cryst. Growth 330, 30–34 (2011)

    Article  ADS  Google Scholar 

  2. T. Tanaka, Y. Kume, M. Nishio, Q. Guo, H. Ogawa, A. Yoshida, Jpn. J. Appl. Phys. 42, L362–L364 (2003)

    Article  ADS  Google Scholar 

  3. M. Nishio, K. Hayashida, Q. Guo, H. Ogawa, Appl. Surf. Sci. 169–170, 227–230 (2001)

    Article  ADS  Google Scholar 

  4. J.A. Garcia, A. Remón, V. Muñoz, R. Triboulet, J. Cryst. Growth 191, 685–691 (1998)

    Article  ADS  Google Scholar 

  5. T. Löffler, T. Hahn, M. Thomson, F. Jacob, H.G. Roskos, Opt. Express 13, 5353 (2005)

    Article  ADS  Google Scholar 

  6. D. Lee, J.E. Zucker, M.D. Divino, R.F. Austin, R.D. Feldman, K.L. Jones, A.M. Johnson, Appl. Phys. Lett. 59, 1867–1869 (1991)

    Article  ADS  Google Scholar 

  7. S. Valette, G. Labrunie, J. Lizet, J. Appl. Phys. 46, 2731–2732 (1975)

    Article  ADS  Google Scholar 

  8. S. Wang, D. Ding, X. Liu, X.-B. Zhang, D.J. Smith, J.K. Furdyna, Y.-H. Zhang, J. Cryst. Growth 311, 2116–2119 (2009)

    Article  ADS  Google Scholar 

  9. W. Wang, A. Lin, J.D. Phillips, J. Electron. Mater. 37, 1044–1048 (2008)

    Article  ADS  Google Scholar 

  10. W. Wang, J.D. Phillips, S.J. Kim, X. Pan, J. Electron. Mater. 40, 1674–1678 (2011)

    Article  ADS  Google Scholar 

  11. T. Tanaka, S. Kusaba, T. Mochinaga, K. Saito, Q. Guo, M. Nishio, K.M. Yu, W. Walukiewicz, Appl. Phys. Lett. 100, 011905 (2012)

    Article  ADS  Google Scholar 

  12. R.N. Jacobs, L.A. Almeida, J. Markunas, J. Pellegrino, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, S.B. Qadri, T. Lee, M. Kim, J. Electron. Mater. 37, 1480–1487 (2008)

    Article  ADS  Google Scholar 

  13. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, L. Faraone, J. Electron. Mater. 43, 2788–2794 (2014)

    Article  ADS  Google Scholar 

  14. L. He, L. Chen, Y. Wu, X.L. Fu, Y.Z. Wang, J. Wu, M.F. Yu, J.R. Yang, R.J. Ding, X.N. Hu, Y.J. Li, Q.Y. Zhang, J. Cryst. Growth 301–302, 268–272 (2007)

    Article  ADS  Google Scholar 

  15. J.P. Zanatta, G. Badano, P. Ballet, C. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, A. Million, G. Destefanis, S. Mibord, E. Brochier, P. Costa, J. Electron. Mater. 35, 1231–1236 (2006)

    Article  ADS  Google Scholar 

  16. J.M. Arias, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 9, 1646 (1991)

    Article  ADS  Google Scholar 

  17. S. Rujirawat, L.A. Almeida, Y.P. Chen, S. Sivananthan, D.J. Smith, Appl. Phys. Lett. 71, 1810–1812 (1997)

    Article  ADS  Google Scholar 

  18. R.N. Jacobs, M. Jaime Vasquez, C.M. Lennon, C. Nozaki, L.A. Almeida, J. Pellegrino, J. Arias, C. Taylor, B. Wissman, J. Electron. Mater. 44, 3076–3081 (2015)

    Article  ADS  Google Scholar 

  19. L. He, X. Fu, Q. Wei, W. Wang, L. Chen, Y. Wu, X. Hu, J. Yang, Q. Zhang, R. Ding, X. Chen, W. Lu, J. Electron. Mater. 37, 1189–1199 (2008)

    Article  ADS  Google Scholar 

  20. J. Chai, O.C. Noriega, A. Dedigama, J.J. Kim, A.A. Savage, K. Doyle, C. Smith, N. Chau, J. Pena, J.H. Dinan, D.J. Smith, T.H. Myers, J. Electron. Mater. 42, 3090–3096 (2013)

    Article  ADS  Google Scholar 

  21. J. Fan, L. Ouyang, X. Liu, D. Ding, J.K. Furdyna, D.J. Smith, Y.-H. Zhang, J. Cryst. Growth 323, 127–131 (2011)

    Article  ADS  Google Scholar 

  22. M.S. Jang, S.H. Oh, K.H. Lee, J.H. Bahng, J.C. Choi, K.H. Jeong, H.L. Park, D.C. Choo, D.U. Lee, T.W. Kim, J. Phys. Chem. Solids 64, 357–360 (2003)

    Article  ADS  Google Scholar 

  23. Q. Guo, K. Takahashi, K. Saito, H. Akiyama, T. Tanaka, M. Nishio, Appl. Phys. Lett. 102, 092107 (2013)

    Article  ADS  Google Scholar 

  24. O. Arı, E. Bilgilisoy, E. Ozceri, Y. Selamet, J. Electron. Mater. 45, 4736–4741 (2016)

    Article  ADS  Google Scholar 

  25. E. Bilgilisoy, S. Özden, E. Bakali, M. Karakaya, Y. Selamet, J. Electron. Mater. 44, 3124–3133 (2015)

    Article  ADS  Google Scholar 

  26. J. Frühauf, E. Gärtner, S. Krönert, Shape and Functional Elements of the Bulk Silicon Microtechnique (Springer, Berlin, 2005)

    Google Scholar 

  27. W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, H.F. Schaake, J. Electron. Mater. 24, 505–510 (1995)

    Article  ADS  Google Scholar 

  28. E.P. Warekois, M.C. Lavine, A.N. Mariano, H.C. Gatos, J. Appl. Phys. 33, 690–696 (1962)

    Article  ADS  Google Scholar 

  29. M.J. Fairlie, J.G. Akkerman, R.S. Timsit, J.M. Zavislan, in Proceedings of SPIE 0749, Metrology: Figure and Finish (1987), pp. 105–113

  30. W. Mönch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 2001)

    Book  Google Scholar 

  31. L.Q. Zhou, C. Chen, H. Jia, C. Ling, D. Banerjee, J.D. Phillips, Y. Wang, J. Electron. Mater. 43, 889–893 (2014)

    Article  ADS  Google Scholar 

  32. W. Mahmood, A. Thomas, A.U. Haq, N.A. Shah, M.F. Nasir, J. Phys. D. Appl. Phys. 50, 255503 (2017)

    Article  ADS  Google Scholar 

  33. Z. Zhang, B. Wang, P. Zhou, R. Kang, B. Zhang, D. Guo, Sci. Rep. 6, 26891 (2016)

    Article  ADS  Google Scholar 

  34. X.J. Wang, Y.B. Hou, Y. Chang, C.R. Becker, R.F. Klie, S. Sivananthan, J. Electron. Mater. 38, 1776–1780 (2009)

    Article  ADS  Google Scholar 

  35. S.Y. Woo, G.A. Devenyi, S. Ghanad-Tavakoli, R.N. Kleiman, J.S. Preston, G.A. Botton, Appl. Phys. Lett. 102, 132103 (2013)

    Article  ADS  Google Scholar 

  36. O. Arı, M. Polat, M. Karakaya, Y. Selamet, Phys. Status Solidi 12, 1211–1214 (2015)

    Article  Google Scholar 

  37. K. Nakagawa, K. Maeda, S. Takeuchi, Appl. Phys. Lett. 34, 574–575 (1979)

    Article  ADS  Google Scholar 

  38. P.F. Fewster, S. Cole, A.F.W. Willoughby, M. Brown, J. Appl. Phys. 52, 4568–4571 (1981)

    Article  ADS  Google Scholar 

  39. P.F. Fewster, P.A.C. Whiffin, J. Appl. Phys. 54, 4668–4670 (1983)

    Article  ADS  Google Scholar 

  40. T. Asahi, T. Yabe, K. Sato, J. Electron. Mater. 33, 651–653 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Orhan Öztürk, Elif Bilgilisoy, and Mustafa Polat for their help in XRD measurements. Our special thanks go to Gülnur Aygün and Lütfi Özyüzer for their support for XPS measurements. Additionally, we thank IYTE Material Research Center staff, especially Emine Bakali, for obtaining SEM images. A very heartfelt thanks and acknowledgements go to Yusuf Selamet for his support in all aspects of this work. Finally, we are grateful to SSM (Undersecretariat for Defence Industries of Turkey) and ASELSAN for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Ozceri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozceri, E., Tarhan, E. Epitaxial characteristics of MBE-grown ZnTe thin films on GaAs (211)B substrates. Appl. Phys. A 125, 747 (2019). https://doi.org/10.1007/s00339-019-3043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3043-5

Navigation