Skip to main content
Log in

Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare the diagnostic accuracy of computed tomography (CT) in the assessment of global and regional left ventricular (LV) function with magnetic resonance imaging (MRI).

Methods

MEDLINE, EMBASE and ISI Web of Science were systematically reviewed. Evaluation included: ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and left ventricular mass (LVM). Differences between modalities were analysed using limits of agreement (LoA). Publication bias was measured by Egger’s regression test. Heterogeneity was evaluated using Cochran’s Q test and Higgins I2 statistic. In the presence of heterogeneity the DerSimonian-Laird method was used for estimation of heterogeneity variance.

Results

Fifty-three studies including 1,814 patients were identified. The mean difference between CT and MRI was -0.56 % (LoA, -11.6–10.5 %) for EF, 2.62 ml (-34.1–39.3 ml) for EDV and 1.61 ml (-22.4–25.7 ml) for ESV, 3.21 ml (-21.8–28.3 ml) for SV and 0.13 g (-28.2–28.4 g) for LVM. CT detected wall motion abnormalities on a per-segment basis with 90 % sensitivity and 97 % specificity.

Conclusions

CT is accurate for assessing global LV function parameters but the limits of agreement versus MRI are moderately wide, while wall motion deficits are detected with high accuracy.

Key Points

• CT helps to assess patients with coronary artery disease (CAD).

• MRI is the reference standard for evaluation of left ventricular function.

• CT provides accurate assessment of global left ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CT:

Computed tomography

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

LoA:

Limits of agreement

LV:

Left ventricular

LVM:

Left ventricular mass

MRI:

Magnetic resonance imaging

SV:

Stroke volume

References

  1. Hammermeister KE, DeRouen TA, Dodge HT (1979) Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation 59:421–430

    Article  CAS  PubMed  Google Scholar 

  2. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    Article  CAS  PubMed  Google Scholar 

  3. Bellenger NG, Burgess MI, Ray SG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  4. Dewey M (2014) Cardiac CT, 2nd edn. Springer, Berlin Heidelberg

    Book  Google Scholar 

  5. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  6. Dewey M, Müller M, Eddicks S et al (2006) Evaluation of global and regional left ventricular function with 16-slice computed tomography, biplane cineventriculography, and two-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging. J Am Coll Cardiol 48:2034–2044

    Article  PubMed  Google Scholar 

  7. Wua YW, Tadamura E, Yamamuro M et al (2008) Estimation of global and regional cardiac function using 64-slice computed tomography: a comparison study with echocardiography, gated-SPECT and cardiovascular magnetic resonance. Int J Cardiol 128:69–76

    Article  Google Scholar 

  8. Castillo E, Lima JAC, Bluemke DA (2003) Regional myocardial function: advances in MR imaging and analysis. Radiographics 23:S127–S140

    Article  PubMed  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  PubMed  Google Scholar 

  10. Martin Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310

    Article  Google Scholar 

  11. Schuetz GM, Schlattmann P, Dewey M (2012) Use of 3 × 2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests: meta-analytical evaluation of coronary CT angiography studies. BMJ 345:e6717

    Article  PubMed  PubMed Central  Google Scholar 

  12. Williamson PR, Lancaster GA, Craig JV, Smyth RL (2002) Meta-analysis of method comparison studies. Stat Med 21:2013–2025

    Article  CAS  PubMed  Google Scholar 

  13. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  14. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  15. Van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21:589–624

    Article  PubMed  Google Scholar 

  16. Van Houwelingen HCZK, Stijnen T (1993) A bivariate approach to meta-analysis. Stat Med 12:2273–2284

    Article  PubMed  Google Scholar 

  17. Dwamena BA, Sylvester R and Carlos RC (2007) MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. Statistical Software Components. Available via: http://www.academia.edu/6316390/MIDAS_Stata_module_for_meta-analytical_integration_of_diagnostic_test_accuracy_studies. Accessed 2007

  18. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available via: http://www.R-project.org/. Accessed 2015

  19. Schwarzer G (2014) Meta: Meta-Analysis with R, R package version 3.8-0, Guido Schwarzer Available via: http://cran.revolution-computing.com/2014-10-31/web/packages/meta/meta.pdf. Accessed 12 Sep 2014.

  20. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw. doi:10.18637/jss.v036.i03

    Google Scholar 

  21. Akram K, Anderson HD, Voros S (2009) Quantification of left ventricular parameters obtained by automated software for 64-slice multidetector computed tomography and comparison with magnetic resonance imaging. Cardiovasc Intervent Radiol 32:1154–1160

    Article  PubMed  Google Scholar 

  22. Annuar BR, Liew CK, Chin SP et al (2008) Assessment of global and regional left ventricular function using 64-slice multislice computed tomography and 2D echocardiography: a comparison with cardiac magnetic resonance. Eur J Radiol 65:112–119

    Article  PubMed  Google Scholar 

  23. Arraiza M, Azcarate PM, De Cecco CN et al (2012) Assessment of left ventricular parameters in orthotopic heart transplant recipients using dual-source CT and contrast-enhanced echocardiography: comparison with MRI. Eur J Radiol 81:3282–3288

    Article  PubMed  Google Scholar 

  24. Bak SH, Ko SM, Jeon HJ, Yang HS, Hwang HK, Song MG (2012) Assessment of global left ventricular function with dual-source computed tomography in patients with valvular heart disease. Acta Radiol 53:270–277

    Article  PubMed  Google Scholar 

  25. Bastarrika G, Arraiza M, De Cecco CN, Mastrobuoni S, Ubilla M, Rabago G (2008) Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur Radiol 18:1784–1790

    Article  PubMed  Google Scholar 

  26. Belge B, Coche E, Pasquet A, Vanoverschelde JLJ, Gerber BL (2006) Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography - comparison with cine magnetic resonance imaging. Eur Radiol 16:1424–1433

    Article  PubMed  Google Scholar 

  27. Brodoefel H, Kramer U, Reimann A et al (2007) Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol 189:1064–1070

    Article  PubMed  Google Scholar 

  28. Busch S, Johnson TRC, Wintersperger BJ et al (2008) Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol 18:570–575

    Article  CAS  PubMed  Google Scholar 

  29. De Jonge GJ, Van Der Vleuten PA, Overbosch J et al (2011) Semi-automatic measurement of left ventricular function on dual source computed tomography using five different software tools in comparison with magnetic resonance imaging. Eur J Radiol 80:755–766

    Article  PubMed  Google Scholar 

  30. de la Pena-Almaguer E, Azpiri Lopez JR, Gonzalez-Camid Fde J et al (2005) Evaluation of left ventricular function with a 16-slice multidetector tomograph (MDCT-16): correlation with cardiovascular magnetic resonance imaging. Arch Cardiol Mex 75:55–60

    PubMed  Google Scholar 

  31. Dewey M (2006) Multisegment and Halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Investig Radiol 41(4):400–9

    Article  Google Scholar 

  32. Ehrhard K, Oberholzer K, Gast K, Mildenberger P, Kreitner KF, Thelen M (2002) Multi-slice CT (MSCT) in cardiac function imaging: threshold-value-supported 3D volume reconstructions to determine the left ventricular ejection fraction in comparison to MRI. Röfo 174:1566–1569

    CAS  PubMed  Google Scholar 

  33. Fischbach R, Juergens KU, Ozgun M et al (2007) Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol 17:1009–1017

    Article  PubMed  Google Scholar 

  34. Greupner J, Zimmermann E, Grohmann A et al (2012) Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard. J Am Coll Cardiol 59:1897–1907

    Article  PubMed  Google Scholar 

  35. Grude M, Juergens KU, Wichter T et al (2003) Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Investig Radiol 38:653–661

    Article  Google Scholar 

  36. Guo YK, Yang ZG, Ning G et al (2009) Sixty-four-slice multidetector computed tomography for preoperative evaluation of left ventricular function and mass in patients with mitral regurgitation: comparison with magnetic resonance imaging and echocardiography. Eur Radiol 19:2107–2116

    Article  PubMed  Google Scholar 

  37. Halliburton SS, Petersilka M, Schvartzman PR, Obuchowski N, White RD (2003) Evaluation of left ventricular dysfunction using multiphasic reconstructions of coronary multi-slice computed tomography data in patients with chronic ischemic heart disease: validation against cine magnetic resonance imaging. Int J Cardiovasc Imaging 19:73–83

    Article  PubMed  Google Scholar 

  38. Heuschmid M, Rothfuss J, Schroder S et al (2005) Left ventricular functional parameters: comparison of 16-slice spiral CT with MRI. Röfo 177:60–66

    CAS  PubMed  Google Scholar 

  39. Heuschmid M, Rothfuss JK, Schroeder S et al (2006) Assessment of left ventricular myocardial function using 16-slice multidetector-row computed tomography: comparison with magnetic resonance imaging and echocardiography. Eur Radiol 16:551–559

    Article  PubMed  Google Scholar 

  40. Jensen CJ, Jochims M, Hunold P et al (2010) Assessment of left ventricular function and mass in dual-source computed tomography coronary angiography Influence of beta-blockers on left ventricular function: comparison to magnetic resonance imaging. Eur J Radiol 74:484–491

    Article  PubMed  Google Scholar 

  41. Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410

    Article  PubMed  Google Scholar 

  42. Juergens KU, Maintz D, Grude M et al (2005) Multi-detector row computed tomography of the heart: does a multi-segment reconstruction algorithm improve left ventricular volume measurements? Eur Radiol 15:111–117

    Article  PubMed  Google Scholar 

  43. Juergens KU, Seifarth H, Maintz D et al (2006) MDCT determination of volume and function of the left ventricle: are short-axis image reformations necessary? AJR Am J Roentgenol 186:S371–378

    Article  PubMed  Google Scholar 

  44. Koch K, Oellig O, Kunz P et al (2004) Assessment of global and regional left ventricular function with a 16-slice spiral-CT using two different software tools for quantitative functional analysis and qualitative evaluation of wall motion changes in comparison with magnetic resonance imaging. Röfo 176:1786–1793

    CAS  PubMed  Google Scholar 

  45. Krzych LJ, Paraniak-Gieszczyk B, Morawski W, Basiak M, Bochenek A (2012) Assessment of left ventricular function with computed tomography and magnetic resonance in patients with low ejection fraction scheduled for coronary artery bypass grafting: a preliminary study. Pol Arch Med Wewn 122:398–405

    PubMed  Google Scholar 

  46. Lee H, Kim SY, Gebregziabher M, Hanna EL, Schoepf UJ (2012) Impact of ventricular contrast medium attenuation on the accuracy of left and right ventricular function analysis at cardiac multi detector-row CT compared with cardiac MRI. Acad Radiol 19:395–405

    Article  PubMed  Google Scholar 

  47. Luders F, Fischbach R, Seifarth H, Wessling J, Heindel W, Juergens KU (2009) Dual-source computed tomography: effect on regional and global left ventricular function assessment compared to magnetic resonance imaging. Röfo 181:962–969

    CAS  PubMed  Google Scholar 

  48. Maffei E, Messalli G, Martini C et al (2012) Left and right ventricle assessment with cardiac CT: validation study vs. cardiac MR. Eur Radiol 22:1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mahnken AH, Bruners P, Stanzel S et al (2009) Functional imaging in the assessment of myocardial infarction: MR imaging vs. MDCT vs. SPECT. Eur J Radiol 71:480–485

    Article  PubMed  Google Scholar 

  50. Mahnken AH, Koos R, Katoh M et al (2005) Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 15:714–720

    Article  PubMed  Google Scholar 

  51. Mahnken AH, Muhlenbruch G, Koos R et al (2006) Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 16:1416–1423

    Article  PubMed  Google Scholar 

  52. Mahnken AH, Spuentrup E, Niethammer M et al (2003) Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 44:604–611

    Article  CAS  PubMed  Google Scholar 

  53. Mahnken AH, Spuntrup E, Wildberger JE et al (2003) Quantification of cardiac function with multislice spiral CT using retrospective EKG-gating: comparison with MRI. Röfo 175:83–88

    CAS  PubMed  Google Scholar 

  54. Mazonakis M, Pagonidis K, Schlosser T et al (2008) Stereological estimation of left-ventricular volumetric and functional parameters from multidetector-row computed tomography data. Eur Radiol 18:1338–1349

    Article  PubMed  Google Scholar 

  55. Nicol ED, Kafka H, Stirrup J et al (2009) A single, comprehensive non-invasive cardiovascular assessment in pulmonary arterial hypertension: combined computed tomography pulmonary and coronary angiography. Int J Cardiol 136:278–288

    Article  PubMed  Google Scholar 

  56. Palumbo A, Maffei E, Martini C et al (2010) Functional parameters of the left ventricle: comparison of cardiac MRI and cardiac CT in a large population. Radiol Med 115:702–713

    Article  CAS  PubMed  Google Scholar 

  57. Puesken M, Fischbach R, Wenker M et al (2008) Global left-ventricular function assessment using dual-source multidetector CT: effect of improved temporal resolution on ventricular volume measurement. Eur Radiol 18:2087–2094

    Article  PubMed  Google Scholar 

  58. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151:736–744

    Article  PubMed  Google Scholar 

  59. Rist C, Johnson TR, Becker A et al (2007) Dual-source cardiac CT imaging with improved temporal resolution. Impact on image quality and analysis of left ventricular function. Radiologe 47:287–294

    Article  PubMed  Google Scholar 

  60. Salm LP, Schuijf JD, de Roos A et al (2006) Global and regional left ventricular function assessment with 16-detector row CT: comparison with echocardiography and cardiovascular magnetic resonance. Eur J Echocardiogr 7:308–314

    Article  PubMed  Google Scholar 

  61. Sarwar A, Shapiro MD, Nasir K et al (2009) Evaluating global and regional left ventricular function in patients with reperfused acute myocardial infarction by 64-slice multidetector CT: a comparison to magnetic resonance imaging. J Cardiovasc Comput Tomogr 3:170–177

    Article  PubMed  Google Scholar 

  62. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J (2007) Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 48:30–35

    Article  CAS  PubMed  Google Scholar 

  63. Schlosser T, Pagonidis K, Herborn CU et al (2005) Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. AJR Am J Roentgenol 184:765–773

    Article  PubMed  Google Scholar 

  64. Schroeder J, Peterschroeder A, Vaske B et al (2009) Cardiac volumetry in patients with heart failure and reduced ejection fraction: a comparative study correlating multi-slice computed tomography and magnetic resonance tomography. Reasons for intermodal disagreement. Clin Res Cardiol 98:739–747

    Article  PubMed  Google Scholar 

  65. Sugeng L, Mor-Avi V, Weinert L et al (2006) Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114:654–661

    Article  PubMed  Google Scholar 

  66. Takx RAP, Moscariello A, Schoepf UJ et al (2012) Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 81:e598–e604

    Article  PubMed  Google Scholar 

  67. van der Vleuten PA, de Jonge GJ, Lubbers DD et al (2009) Evaluation of global left ventricular function assessment by dual-source computed tomography compared with MRI. Eur Radiol 19:271–277

    Article  PubMed  Google Scholar 

  68. Wai B, Thai WE, Brown H, Truong QA (2013) Novel phase-based noise reduction strategy for quantification of left ventricular function and mass assessment by cardiac CT: comparison with cardiac magnetic resonance. Eur J Radiol 82(8):e337–41

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wu YW, Tadamura E, Kanao S et al (2008) Left ventricular functional analysis using 64-slice multidetector row computed tomography: comparison with left ventriculography and cardiovascular magnetic resonance. Cardiology 109:135–142

    Article  PubMed  Google Scholar 

  70. Yamamuro M, Tadamura E, Kubo S et al (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234:381–390

    Article  PubMed  Google Scholar 

  71. Fuchs A, Kuhl JT, Lonborg J et al (2012) Automated assessment of heart chamber volumes and function in patients with previous myocardial infarction using multidetector computed tomography. J Cardiovasc Comput Tomogr 6:325–334

    Article  PubMed  Google Scholar 

  72. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Mukherjee D, Lichstein E (2014) Meta-analysis of global left ventricular function comparing multidetector computed tomography with cardiac magnetic resonance imaging. Am J Cardiol 113:731–738

    Article  PubMed  Google Scholar 

  73. Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  74. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–U112

    Article  PubMed  Google Scholar 

  75. Isma'eel H, Hamirani YS, Mehrinfar R et al (2009) Optimal phase for coronary interpretations and correlation of ejection fraction using late-diastole and end-diastole imaging in cardiac computed tomography angiography: implications for prospective triggering. Int J Cardiovasc Imaging 25:739–749

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sun Z (2010) Multislice CT angiography in cardiac imaging: prospective ECG-gating or retrospective ECG-gating? Biomed Imaging Interv J 6:e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ünal E, Yıldız AE, Güler E et al (2015) Comparison of image quality and radiation dose between prospectively ECG-triggered and retrospectively ECG-gated CT angiography: establishing heart rate cut-off values in first-generation dual-source CT. Anatol J Cardiol 15:759–764

    Article  PubMed  Google Scholar 

  78. Asferg C, Usinger L, Kristensen TS, Abdulla J (2012) Accuracy of multi-slice computed tomography for measurement of left ventricular ejection fraction compared with cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography: a systematic review and meta-analysis. Eur J Radiol 81:e757–762

    Article  PubMed  Google Scholar 

  79. Higgins CB (1992) Which standard has the gold? J Am Coll Cardiol 19:1608–1609

    Article  CAS  PubMed  Google Scholar 

  80. Bellenger NG, Grothues F, Smith GC, Pennell DJ (2000) Quantification of right and left ventricular function by cardiovascular magnetic resonance. Herz 25:392–399

    Article  CAS  PubMed  Google Scholar 

  81. Roguin A, Zviman MM, Meininger GR et al (2004) Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 T. Circulation 110:475–482

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dewey M, Hamm B (2007) CT coronary angiography: examination technique, clinical results, and outlook on future developments. Röfo 179:246–260

    CAS  PubMed  Google Scholar 

  83. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    Article  PubMed  Google Scholar 

  84. Dewey M, Schink T, Dewey CF (2007) Claustrophobia during magnetic resonance imaging: cohort study in over 55,000 patients. J Magn Reson Imaging 26:1322–1327

    Article  PubMed  Google Scholar 

  85. Schönenberger E, Schnapauff D, Teige F, Laule M, Hamm B, Dewey M (2007) Patient acceptance of noninvasive and invasive coronary angiography. PLoS One 2:e246

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dewey M, Hamm B (2007) Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol 17:1301–1309

    Article  PubMed  Google Scholar 

  87. Feger S, Rief M, Zimmermann E et al (2015) Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography. Eur Radiol 25:2115–2124

    Article  CAS  PubMed  Google Scholar 

  88. Halliburton SS, Abbara S, Chen MY et al (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pursnani A, Lee A, Mayrhofer T et al (2014) Feasibility of a radiation dose conserving CT protocol for myocardial function assessment. Br J Radiol 87:20130755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen CM, Liu YC, Chen CC, Wen MS, Hung CF, Wan YL (2012) Radiation dose exposure of patients undergoing 320-row cardiac CT for assessing coronary angiography and global left ventricular function. Int J Cardiovasc Imaging 28(Suppl 1):1–5

    Article  PubMed  Google Scholar 

  91. Angel E, Yaghmai N, Jude CM et al (2009) Dose to radiosensitive organs during routine chest CT: effects of tube current modulation. AJR Am J Roentgenol 193:1340–1345

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fuchs TA, Stehli J, Bull S et al (2014) Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination. Eur Heart J 35:1131–1136

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nuyts J, De Man B, Dupont P, Defrise M, Suetens P, Mortelmans L (1998) Iterative reconstruction for helical CT: a simulation study. Phys Med Biol 43:729–737

    Article  CAS  PubMed  Google Scholar 

  94. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J (2009) Strategies for reducing radiation dose in CT. Radiol Clin North Am 47:27–40

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  96. Earls JP (2009) How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr 3:45–51

    Article  PubMed  Google Scholar 

  97. Mahnken AH, Bruners P, Schmidt B, Bornikoel C, Flohr T, Gunther RW (2009) Left ventricular function can reliably be assessed from dual-source CT using ECG-gated tube current modulation. Investig Radiol 44:384–389

    Article  Google Scholar 

  98. Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. J Am Coll Cardiol 56:1864–1894

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Prof. Dewey. The authors of this manuscript declare relationships with the following companies:

Prof. Dewey has received grant support from the Heisenberg Program of the DFG for a professorship (DE 1361/14-1), the FP7 Program of the European Commission for the randomised multicentre DISCHARGE trial (603266-2, HEALTH-2012.2.4.-2), the European Regional Development Fund (20072013 2/05, 20072013 2/48), the German Heart Foundation/German Foundation of Heart Research (F/23/08, F/27/10), the Joint Program of the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF) for meta-analyses (01KG1013, 01KG1110, 01KG1110), GE Healthcare, Bracco, Guerbet, and Toshiba Medical Systems.

Prof. Dewey has received lecture fees from Toshiba Medical Systems, Guerbet, Cardiac MR Academy Berlin, and Bayer (Schering-Berlex).

Prof. Dewey is a consultant to Guerbet and one of the principal investigators of multicentre studies (CORE-64 and 320) on coronary CT angiography sponsored by Toshiba Medical Systems. He is also the editor of Coronary CT Angiography and Cardiac CT, both published by Springer, and offers hands-on workshops on cardiovascular imaging (www.ct-kurs.de). Prof. Dewey is an associate editor of Radiology and European Radiology.

Prof. Schlattmann received grant support from the tFP7 Program of the European Commission for the randomized multicenter DISCHARGE trial (603266-2, HEALTH-2012.2.4.-2), the Joint Program of the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF) for meta-analyses (01KG1013, 01KG1110, 01KG1110).

Institutional master research agreements exist with Siemens Medical Solutions, Philips Medical Systems, and Toshiba Medical Systems. The terms of these arrangements are managed by the legal department of Charité – Universitätsmedizin Berlin.

The authors state that this work was supported by the Heisenberg Program of the DFG for a professorship (DE 1361/14-1).Statistical expert: Peter Schlattmann (co-author). Institutional Review Board approval was not necessary. Written informed consent was not necessary. None of the results have been previously reported. Methodology: prospective, meta-analysis, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Appendix

Appendix

Table 4 The 27 criteria of the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA). The corresponding page, table or figure in the manuscript is given for all of the 27 criteria
Table 5 Combinations of keywords and MeSH Terms for PubMed, OvidSP and Web of Science
Table 6 Characteristics of MRI scanners used in the included studies
Table 7 Characteristics of CT scanners used in the included studies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaniewska, M., Schuetz, G.M., Willun, S. et al. Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis. Eur Radiol 27, 1640–1659 (2017). https://doi.org/10.1007/s00330-016-4513-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4513-1

Keywords

Navigation