Skip to main content
Log in

Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress.

Abstract

Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

There are no supplementary data.

References

  • Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Alyemeni MN, Al-Huqail AA et al (2020) Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants 9:825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L et al (2021) Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. J Hazard Mater 408:124852

    Article  CAS  PubMed  Google Scholar 

  • Alam P, Kaur Kohli S, Al Balawi T et al (2020) Foliar application of 24-epibrassinolide improves growth, ascorbate-glutathione cycle, and glyoxalase system in brown mustard (Brassica juncea (L.) Czern.) under cadmium toxicity. Plants-Basel 9:1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam P, Balawi TH, Altalayan FH et al (2021) Silicon attenuates the negative effects of chromium stress in tomato plants by modifying antioxidant enzyme activities, ascorbate–glutathione cycle and glyoxalase system. Acta Physiol Plant 43:110

    Article  CAS  Google Scholar 

  • Ali S, Gill RA, Shafique MS et al (2022) Role of phytomelatonin responsive to metal stresses: an omics perspective and future scenario. Front Plant Sci. https://doi.org/10.3389/fpls.2022.936747

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsahli AA, Bhat JA, Alyemeni MN et al (2021) Hydrogen sulfide (H2S) mitigates arsenic (As)-induced toxicity in pea (Pisum sativum L.) plants by regulating osmoregulation, antioxidant defense system, ascorbate glutathione cycle and glyoxalase system. J Plant Growth Regul 40:2515–2531

    Article  CAS  Google Scholar 

  • Altaf MM, Diao X, Altaf MA et al (2022a) Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. J Hazard Mater 436:129145

    Article  CAS  PubMed  Google Scholar 

  • Altaf MM, Diao X, Wang H et al (2022b) Salicylic acid induces vanadium stress tolerance in rice by regulating the AsA-GSH cycle and glyoxalase system. J Soil Sci Plant Nutr 22:1983–1999

    Article  CAS  Google Scholar 

  • Álvarez Viveros MF, Inostroza-Blancheteau C, Timmermann T et al (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290

    Article  PubMed  Google Scholar 

  • Amjadi Z, Namdjoyan S, Abolhasani Soorki A (2021) Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 30:387–401

    Article  CAS  PubMed  Google Scholar 

  • An B, Lan J, Deng X et al (2017) Silencing of d-lactate dehydrogenase impedes glyoxalase system and leads to methylglyoxal accumulation and growth inhibition in rice. Front Plant Sci 8:2071

    Article  PubMed  PubMed Central  Google Scholar 

  • Ando E, Kinoshita T (2018) Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Physiol 178:838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar S, Younus H (2017) Inhibitory effect of alliin from Allium sativum on the glycation of superoxide dismutase. Int J Biol Macromol 103:182–193

    Article  CAS  PubMed  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA et al (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  PubMed  Google Scholar 

  • Barzin G, Safari F, Bishehkolaei R (2022) Beneficial role of methyl jasmonate on morphological, physiological and phytochemical responses of Calendula officinalis L. under chromium toxicity. Physiol Mol Biol Plants 28:1453–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basit F, Tao J, An J et al (2023) Nitric oxide and brassinosteroids enhance chromium stress tolerance in by modulating antioxidative defense and glyoxalase systems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-25901-0

    Article  Google Scholar 

  • Batth R, Jain M, Kumar A et al (2020) Zn2+ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. PLoS ONE 15:e0233493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Basit F, Alyemeni MN et al (2023) Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. Plant Physiol Biochem 198:107678

    Article  CAS  PubMed  Google Scholar 

  • Bhowal B, Singla-Pareek SL, Sopory SK, Kaur C (2020) From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics 21:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuyan MHMB, Parvin K, Mohsin SM et al (2020) Modulation of cadmium tolerance in rice: insight into vanillic acid-induced upregulation of antioxidant defense and glyoxalase systems. Plants-Basel 9:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidi H, Fallah H, Niknejad Y, Tari DB (2021) Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol Biochem 163:348–357

    Article  CAS  PubMed  Google Scholar 

  • Cai YT, Zhang H, Qi YP et al (2019) Responses of reactive oxygen species and methylglyoxal metabolisms to magnesium-deficiency differ greatly among the roots, upper and lower leaves of Citrus sinensis. BMC Plant Biol 19:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen KG, An YQC (2006) Transcriptional responses to gibberellin and abscisic acid in barley aleurone. J Integr Plant Biol 48:591–612

    Article  CAS  Google Scholar 

  • Clugston SL, Barnard JFJ, Kinach R et al (1998) Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions. Biochemistry 37:8754–8763

    Article  CAS  PubMed  Google Scholar 

  • Cooper RA (1974) Methylglyoxal formation during glucose catabolism by Pseudomonas saccharophila. Identification of methylglyoxal synthase. Eur J Biochem 44:81–86

    Article  CAS  PubMed  Google Scholar 

  • Dakin HD, Dudley HW (1913) An enzyme concerned with the formation of hydroxy acids from ketonic aldehydes. J Biol Chem 14:155–157

    Article  CAS  Google Scholar 

  • Deswal R, Sopory SK (1998) Biochemical and immunochemical characterization of Brassica juncea glyoxalase I. Phytochemistry 49:2245–2253

    Article  CAS  PubMed  Google Scholar 

  • Deswal R, Sopory SK (1999) Glyoxalase I from Brassica juncea is a calmodulin stimulated protein. Biochim Biophys Acta BBA-Mol Cell Res 1450:460–467

    Article  CAS  Google Scholar 

  • Dias MC, Mariz-Ponte N, Santos C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 137:121–129

    Article  CAS  PubMed  Google Scholar 

  • Ding P, Ding Y (2020) Stories of salicylic acid: a plant defense hormone. Trends Plant Sci 25:549–565

    Article  CAS  PubMed  Google Scholar 

  • Driesen E, Van den Ende W, De Proft M, Saeys W (2020) Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: a review. Agronomy 10:1975

    Article  CAS  Google Scholar 

  • Dubey S, Shri M, Gupta A et al (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16:1169–1192

    Article  CAS  Google Scholar 

  • Eisalou AV, Namdjoyan S, Soorki AA (2021) The combined effect of melatonin and salicylic acid improved the tolerance of safflower seedlings to zinc toxicity. ACTA Physiol Plant 43:138

    Article  CAS  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH, Dianzani MU et al (1982) Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J 208:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eva C, Toth G, Oszvald M, Tamas L (2014) Overproduction of an Arabidopsis aldo-keto reductase increases barley tolerance to oxidative and cadmium stress by an in vivo reactive aldehyde detoxification. Plant Growth Regul 74:55–63

    Article  CAS  Google Scholar 

  • Eva C, Solti A, Oszvald M et al (2016) Improved reactive aldehyde, salt and cadmium tolerance of transgenic barley due to the expression of aldo-keto reductase genes. Acta Physiol Plant 38:99

    Article  Google Scholar 

  • Feng X, Abubakar AS, Yu C et al (2022) Analysis of WRKY resistance gene family in Boehmeria nivea (L.) Gaudich: crosstalk mechanisms of secondary cell wall thickening and cadmium stress. Front Plant Sci 13:812988

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Z-W, Li J-H, Feng Y-R et al (2021) The metabolite methylglyoxal-mediated gene expression is associated with histone methylglyoxalation. Nucleic Acids Res 49:1886–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K et al (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Gambhir P, Raghuvanshi U, Parida AP et al (2023a) Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. Plant Physiol 192:2161–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambhir P, Singh V, Raghuvanshi U et al (2023b) A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. Plant Cell Environ 46:518–548

    Article  CAS  PubMed  Google Scholar 

  • Garai S, Bhowal B, Kaur C et al (2021) What signals the glyoxalase pathway in plants? Physiol Mol Biol Plants 27:2407–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbani A, Pishkar L, Roodbari N et al (2023) Nitrate reductase is needed for methyl jasmonate-mediated arsenic toxicity tolerance of rice by modulating the antioxidant defense system, glyoxalase system and arsenic sequestration mechanism. J Plant Growth Regul 42:1107–1119

    Article  CAS  Google Scholar 

  • Ghosh A (2017) Genome-Wide identification of glyoxalase genes in Medicago truncatula and their expression profiling in response to various developmental and environmental stimuli. Front Plant Sci 8:836

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Islam T (2016) Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC Plant Biol 16:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J 80:93–105

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Kushwaha HR, Hasan MR et al (2016) Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci Rep 6:18358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Mustafiz A, Pareek A et al (2022) Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. Physiol Plant 174:e13693

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M et al (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Grant AW, Steel G, Waugh H, Ellis EM (2003) A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. Fems Microbiol Lett 218:93–99

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liu C, Liang Y et al (2019) Salicylic acid signals plant defence against cadmium toxicity. Int J Mol Sci 20:2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Ling L, Wang X et al (2023) Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC Plant Biol 23:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta BK, Sahoo KK, Ghosh A et al (2018) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ 41:1186–1200

    Article  CAS  PubMed  Google Scholar 

  • Hasan MdK, Ahammed GJ, Sun S et al (2019) Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L. J Agric Food Chem 67:10563–10576

    Article  CAS  PubMed  Google Scholar 

  • Hasan MM, Alharbi BM, Alhaithloul HAS et al (2021) Spermine-mediated tolerance to selenium toxicity in wheat (Triticum aestivum L.) depends on endogenous nitric oxide synthesis. Antioxidants 10:1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS et al (2017a) Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Front Plant Sci 8:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain Md et al (2017b) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A et al (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact 13:203–212

    Article  CAS  Google Scholar 

  • Hediji H, Kharbech O, Massoud MB et al (2021) Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environ Exp Bot 186:104432

    Article  CAS  Google Scholar 

  • Hegedüs A, Erdei S, Janda T et al (2004) Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166:1329–1333

    Article  Google Scholar 

  • Hiyama A, Takemiya A, Munemasa S et al (2017) Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat Commun 8:1284

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopper DJ, Cooper RA (1971) The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett 13:213–216

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Uraji M, Banu MNA et al (2010) The effects of methylglyoxal on glutathione s-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem 74:2124–2126

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Uraji M, Torii A et al (2012a) Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. J Biochem Mol Toxicol 26:315–321

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, OKUMA E, URAJI M, et al (2012b) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Tuya A et al (2012c) Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis: effects of methylglyoxal on Arabidopsis. Plant Biol 14:854–858

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Ye W et al (2012d) Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol 169:979–986

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG et al (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoque MN, Tahjib-Ul-Arif M, Hannan A et al (2021) Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. Int J Mol Sci 22:11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Izaguirre G, Kikonyogo A, Pietruszko R (1998) Methylglyoxal as substrate and inhibitor of human aldehyde dehydrogenase: comparison of kinetic properties among the three isozymes. Comp Biochem Physiol B Biochem Mol Biol 119:747–754

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Batth R, Kumari S, Mustafiz A (2016) Arabidopsis thaliana contains both Ni2+ and Zn2+ dependent glyoxalase i enzymes and ectopic expression of the latter contributes more towards abiotic stress tolerance in E-coli. PLoS ONE 11:e0159348

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan S, Alyemeni MN, Wijaya L et al (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. Bmc Plant Biol 18:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan R, Khan MA, Asaf S et al (2019) Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants-Basel 8:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Wang X, Dou Y et al (2016) Hydrogen sulfide-cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots. Sci Rep 6:39702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakavand SN, Karimi N, Ghasempour H-R (2019) Salicylic acid and jasmonic acid restrains nickel toxicity by ameliorating antioxidant defense system in shoots of metallicolous and non-metallicolous Alyssum inflatum Nayr. Popul Plant Physiol Biochem 135:450–459

    Article  Google Scholar 

  • Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 110:145–175

    Article  CAS  PubMed  Google Scholar 

  • Kamran M, Wang D, Alhaithloul HAS et al (2021) Jasmonic acid-mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in choysum (Brassica parachinensis L.). Ecotoxicol Environ Saf 208:111758

    Article  CAS  PubMed  Google Scholar 

  • Kapoor RT, Ahmad A, Shakoor A et al (2023) Nitric oxide and strigolactone alleviate mercury-induced oxidative stress in Lens culinaris L by modulating glyoxalase and antioxidant defense system. Plants 12:1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Vishnoi A, Ariyadasa TU et al (2013) Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci Rep 3:3076

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Ghosh A, Pareek A et al (2014a) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–499

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Mustafiz A, Sarkar AK et al (2014b) Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol Plant 152:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Singla-Pareek SL, Sopory SK (2014c) Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance. Crit Rev Plant Sci 33:429–456

    Article  CAS  Google Scholar 

  • Kaur C, Kushwaha H, Mustafiz A et al (2015) Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Front Plant Sci 6:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Sharma S, Singla-Pareek SL, Sopory SK (2016) Methylglyoxal detoxification in plants: role of glyoxalase pathway. Indian J Plant Physiol 21:377–390

    Article  Google Scholar 

  • Kaur C, Tripathi AK, Nutan KK et al (2017) A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus. Plant J 89:565–576

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN et al (2020) Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 399:123020

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Polat T, Ashraf M et al (2021) Endogenous nitric oxide and its potential sources regulate glutathione-induced cadmium stress tolerance in maize plants. Plant Physiol Biochem 167:723–737

    Article  CAS  PubMed  Google Scholar 

  • Kerchev P, Van Breusegem F (2022) Improving oxidative stress resilience in plants. Plant J 109:359–372

    Article  CAS  PubMed  Google Scholar 

  • Khan MMK, Jan A, Karibe H, Komatsu S (2005) Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol Biol 58:27–40

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Jahan B, Alajmi MF et al (2019) Exogenously-sourced ethylene modulates defense mechanisms and promotes tolerance to zinc stress in mustard (Brassica juncea L.). Plants-Basel 8:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MF et al (2020) Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. Physiol Mol Biol Plants 26:1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Chopra P, Chhillar H et al (2021a) Regulatory hubs and strategies for improving heavy metal tolerance in plants: chemical messengers, omics and genetic engineering. Plant Physiol Biochem 164:260–278

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MF et al (2021b) Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Saf 222:112535

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Asaf S, Jan R et al (2023) Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Front Plant Sci 14:1100895

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharbech O, Ben Massoud M, Sakouhi L et al (2020a) Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation. Plant Physiol Biochem 154:646–656

    Article  CAS  PubMed  Google Scholar 

  • Kharbech O, Sakouhi L, Ben Massoud M et al (2020b) Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. Plant Physiol Biochem 157:244–255

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Lee SW, Moon H et al (2022) ABI3- and PIF1-mediated regulation of GIG1 enhances seed germination by detoxification of methylglyoxal in Arabidopsis. Plant J 110:1578–1591

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Hashimoto-Sugimoto M, Iba K et al (2020) Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. J Exp Bot 71:2339–2350

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z, Feigl G, Freschi L, Poór P (2019) Gasotransmitters in action: nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 8:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopriva S (2013) Hydrogen sulfide in plants: from dissipation of excess sulfur to signalling molecule. Nitric Oxide-Biol Chem 31:S13–S14

    Article  Google Scholar 

  • Kwak M-K, Ku M, Kang S-O (2014) NAD+-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. FEBS Lett 588:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Kwak M-K, Ku M, Kang S-O (2018) Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim Biophys Acta-Gen Subj 1862:18–39

    Article  CAS  PubMed  Google Scholar 

  • Kwon K, Choi D, Hyun JK et al (2013) Novel glyoxalases from Arabidopsis thaliana. FEBS J 280:3328–3339

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Matthews J (2020) Guard cell metabolism and stomatal function. Annu Rev Plant Biol 71:273–302

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Song J, Kwon K et al (2012) Human DJ-1 and its homologs are novel glyoxalases. Hum Mol Genet 21:3215–3225

    Article  CAS  PubMed  Google Scholar 

  • Li Z-G (2016) Methylglyoxal and glyoxalase system in plants: old players, new concepts. Bot Rev 82:183–203

    Article  Google Scholar 

  • Li Z-G (2022) Role of methylglyoxal and its detoxification system in plant thermotolerance. Acta Physiol Plant 44:69

    Article  CAS  Google Scholar 

  • Li Z-G, Duan X-Q, Min X, Zhou Z-H (2017a) Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. Protoplasma 254:1995–2006

    Article  CAS  PubMed  Google Scholar 

  • Li Z-G, Duan X-Q, Xia Y-M et al (2017b) Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L.). Plant Cell Rep 36:367–370

    Article  PubMed  Google Scholar 

  • Li Z-G, Nie Q, Yang C-L et al (2018) Signaling molecule methylglyoxal ameliorates cadmium injury in wheat (Triticum aestivum L.) by a coordinated induction of glutathione pool and glyoxalase system. Ecotoxicol Environ Saf 149:101–107

    Article  CAS  PubMed  Google Scholar 

  • Li T, Cheng X, Wang Y et al (2019) Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. BMC Genom 20:362

    Article  Google Scholar 

  • Li S-M, Zheng H-X, Zhang X-S, Sui N (2021) Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep 40:271–282

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu Y, Jin L, Peng R (2022) Crosstalk between Ca2+ and other regulators assists plants in responding to abiotic stress. Plants 11:1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M-S, Li H-C, Lai Y-M et al (2013) Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing. J Proteomics 93:133–144

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu W, Lai J et al (2022) OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance. Plant Physiol Biochem 183:85–95

    Article  CAS  PubMed  Google Scholar 

  • Lo TW, Westwood ME, McLellan AC et al (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. J Biol Chem 269:32299–32305

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Chen S, Li Y et al (2020) Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes. Environ Sci Pollut Res 27:8719–8731

    Article  CAS  Google Scholar 

  • Lu M, Yu S, Lian J et al (2021) Physiological and metabolomics responses of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Sci Total Environ 769:145345

    Article  CAS  PubMed  Google Scholar 

  • Mahlanza T, Rutherford RS, Snyman SJ, Watt MP (2019) Methylglyoxal-induced enhancement of somatic embryogenesis and associated metabolic changes in sugarcane (Saccharum spp. hybrids). Plant Cell Tissue Organ Cult 136:279–287

    Article  CAS  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K et al (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 147:990–1001

    Article  CAS  PubMed  Google Scholar 

  • Majlath I, Eva C, Tajti J et al (2020) Exogenous methylglyoxal enhances the reactive aldehyde detoxification capability and frost-hardiness of wheat. Plant Physiol Biochem 149:75–85

    Article  CAS  PubMed  Google Scholar 

  • Manoj SR, Karthik C, Kadirvelu K et al (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254:109779

    Article  CAS  PubMed  Google Scholar 

  • Melvin P, Bankapalli K, D’Silva P, Shivaprasad PV (2017) Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Mol Biol 94:381–397

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Jing H, Huang J et al (2022) The role of nitric oxide signaling in plant responses to cadmium stress. Int J Mol Sci 23:6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merewitz E, Xu Y, Huang B (2016) Differentially expressed genes associated with improved drought tolerance in creeping bentgrass overexpressing a gene for cytokinin biosynthesis. PLoS ONE 11:e0166676

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir MA, Sirhindi G, Alyemeni MN et al (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J Plant Growth Regul 37:1195–1209

    Article  CAS  Google Scholar 

  • Misra K, Banerjee AB, Ray S, Ray M (1995) Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into d-lactate without reduced glutathione. Biochem J 305(Pt 3):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsumoto A, Kim KR, Oshima G et al (1999) Glyoxalase I is a novel nitric-oxide-responsive protein. Biochem J 344(Pt 3):837–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsumoto A, Kim KR, Oshima G et al (2000) Nitric oxide inactivates glyoxalase I in cooperation with glutathione. J Biochem 128:647–654

    Article  CAS  PubMed  Google Scholar 

  • Mohanan MV, Pushpanathan A, Sasikumar SPT et al (2020) Ectopic expression of DJ-1/PfpI domain containing Erianthus arundinaceus Glyoxalase III (EaGly III) enhances drought tolerance in sugarcane. Plant Cell Rep 39:1581–1594

    Article  CAS  PubMed  Google Scholar 

  • Mohanan MV, Pushpanathan A, Padmanabhan S et al (2021) Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress. J Plant Res 134:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Mondal S (2023) Heavy metal stress-induced activation of mitogen-activated protein kinase signalling cascade in plants. Plant Mol Biol Report 41:15–26

    CAS  Google Scholar 

  • Mori IC, Uozumi N, Muto S (2000) Phosphorylation of the inward-rectifying potassium channel kat1 by abr kinase in vicia guard cells. Plant Cell Physiol 41:850–856

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran L-SP (2015a) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Rahman A, Ansary MMU et al (2015b) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Ghosh A, Li Z-G et al (2018) Methylglyoxal—a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 122:96–109

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman MdM, Siddiqui MdN et al (2020) Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. J Hazard Mater 394:122572

    Article  CAS  PubMed  Google Scholar 

  • Mudalkar S, Sreeharsha RV, Reddy AR (2017) Involvement of glyoxalases and glutathione reductase in conferring abiotic stress tolerance to Jatropha curcas L. Environ Exp Bot 134:141–150

    Article  CAS  Google Scholar 

  • Mustafiz A, Ghosh A, Tripathi AK et al (2014) A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J 78:951–963

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci 21:5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MdM et al (2016a) Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Rahman M, Hasanuzzaman M et al (2016b) Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ Sci Pollut Res 23:21206–21218

    Article  CAS  Google Scholar 

  • Nam MH, Huh SM, Kim KM et al (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. PROTEOME Sci 10:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namdjoyan S, Soorki AA, Elyasi N et al (2020) Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 29:108–118

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Le DT, Watanabe Y et al (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS ONE 7:e32124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberschall A, Deák M, Török K et al (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J Cell Mol Biol 24:437–446

    Article  CAS  Google Scholar 

  • Olas B (2015) Hydrogen sulfide in signaling pathways. Clin Chim ACTA 439:212–218

    Article  CAS  PubMed  Google Scholar 

  • Von Pechmann H (1887) Ueber die Spaltung der nitrosoketone. Berichte Dtsch Chem Ges 20:3213–3214

    Article  Google Scholar 

  • Phua SY, De Smet B, Remacle C et al (2021) Reactive oxygen species and organellar signaling. J Exp Bot 72:5807–5824

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Proietti S, Caarls L, Coolen S et al (2018) Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant Cell Environ 41:2342–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proietti S, Falconieri GS, Bertini L et al (2019) GLYI4 plays a role in methylglyoxal detoxification and jasmonate-mediated stress responses in Arabidopsis thaliana. Biomolecules 9:635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proietti S, Bertini L, Falconieri GS et al (2021) A metabolic profiling analysis revealed a primary metabolism reprogramming in Arabidopsis GLYI4 loss-of-function mutant. Plants-Basel 10:2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Shen J, Ahanger MA (2022) Supplementation of nitric oxide and spermidine alleviates the nickel stress-induced damage to growth, chlorophyll metabolism, and photosynthesis by upregulating ascorbate–glutathione and glyoxalase cycle functioning in tomato. Front Plant Sci 13:1039480

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabbani N, Al-Motawa M, Thornalley PJ (2020) Protein glycation in plants—an under-researched field with much still to discover. Int J Mol Sci 21:3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Mostofa MG, Alam MM et al (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Res Int 2015:340812

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Mostofa MG, Nahar K et al (2016) Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems calcium-induced cadmium stress tolerance in rice. Braz J Bot 39:393–407

    Article  Google Scholar 

  • Rai S, Yadav S, Rai R et al (2019) Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 124:981–993

    Article  CAS  PubMed  Google Scholar 

  • Raja V, Qadir SU, Kumar N et al (2023) Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiol Biochem 201:107872

    Article  CAS  PubMed  Google Scholar 

  • Rajwanshi R, Kumar D, Yusuf MA et al (2016) Stress-inducible overexpression of glyoxalase I is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea. Mol Breed 36:76

    Article  Google Scholar 

  • Ray S, Ray M (1982) Purification and characterization of NAD and NADP-linked alpha-ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. J Biol Chem 257:10566–10570

    Article  CAS  PubMed  Google Scholar 

  • Ray M, Ray S (1984) Purification and partial characterization of a methylglyoxal reductase from goat liver. Biochim Biophys Acta BBA-Gen Subj 802:119–127

    Article  CAS  Google Scholar 

  • Saito R, Yamamoto H, Makino A et al (2011) Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O2 at photosystem I: a symptom of plant diabetes. Plant Cell Environ 34:1454–1464

    Article  CAS  PubMed  Google Scholar 

  • Salavati J, Fallah H, Niknejad Y, Barari Tari D (2021) Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiol Mol Biol Plants 27:1089–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi P, Manna M, Kaur H et al (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep 40:1305–1329

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Samuel MA (2015) Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants 1:15185

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Kumar A et al (2017) Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci 18:898

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartori A, Mano CM, Mantovani MC et al (2013) Ferricytochrome c directly oxidizes aminoacetone to methylglyoxal, a catabolite accumulated in carbonyl stress. PLoS ONE 8:e57790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling O, Wenzel N, Naylor M et al (2003) Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo. Biochemistry 42:11777–11786

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Rossoni AW, Maurino VG (2018) Dissecting the physiological function of plant glyoxalase i and glyoxalase I-like proteins. Front Plant Sci 9:1618

    Article  PubMed  PubMed Central  Google Scholar 

  • Scirè A, Cianfruglia L, Minnelli C et al (2022) Glyoxalase 2: towards a broader view of the second player of the glyoxalase system. Antioxidants 11:2131

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Mustafiz A, Singla-Pareek SL et al (2012) Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signal Behav 7:1337–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F et al (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W-G, Liu W, Yu W et al (2019) Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus x canescens. J Hazard Mater 362:275–285

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Alvarez S, Adrien B, Y·, et al (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci 104:6460–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM (2020) Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under Salinity. J Plant Growth Regul 39:1488–1502

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci 100:14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A et al (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Kaur C, Kumar B et al (2020) Reassessing plant glyoxalases: large family and expanding functions. New Phytol 227:714–721

    Article  CAS  PubMed  Google Scholar 

  • Smits MM, Johnson MA (1981) Methylgloxal: enzyme distributions relative to its presence in Douglas-fir needles and absence in Douglas-fir needle callus. Arch Biochem Biophys 208:431–439

    Article  CAS  PubMed  Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad BA et al (2020) Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agron-Basel 10:699

    Article  CAS  Google Scholar 

  • Soliman M, Alhaithloul HA, Hakeem KR et al (2019) Exogenous nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxidants, osmolyte metabolism, and glyoxalase systems. Plants-Basel 8:562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Yan Y, Rosado A et al (2019) ABA alleviates uptake and accumulation of zinc in grapevine (Vitis vinifera L.) by inducing expression of ZIP and detoxification-related genes. Front Plant Sci 10:872

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa Silva M, Gomes RA, Ferreira AEN et al (2013) The glyoxalase pathway: the first hundred years … and beyond. Biochem J 453:1–15

    Article  CAS  PubMed  Google Scholar 

  • Subedi KP, Choi D, Kim I et al (2011) Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol Microbiol 81:926–936

    Article  CAS  PubMed  Google Scholar 

  • Sukdeo N, Honek JF (2007) Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes. Biochim Biophys Acta-Proteins Proteom 1774:756–763

    Article  CAS  Google Scholar 

  • Sun X, Li H, Thapa S et al (2020) Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. Hortic Res 7:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Liu A, Li Z et al (2023) Anthocyanin synthesis is critical for melatonin-induced chromium stress tolerance in tomato. J Hazard Mater 453:131456

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Bartels D, Kirch H-H (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    Article  CAS  PubMed  Google Scholar 

  • Suttisansanee U, Honek JF (2011) Bacterial glyoxalase enzymes. Semin Cell Dev Biol 22:285–292

    Article  CAS  PubMed  Google Scholar 

  • Szent-Györgyi A (1965) Cell-division and cancer: substances which promote or retard cell growth may provide keys to fundamental problems of cellular biology. Sci 149:34–37

    Article  Google Scholar 

  • Takahashi Y, Ebisu Y, Kinoshita T et al (2013) bHLH Transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Sci Signal 6:ra48

    Article  PubMed  Google Scholar 

  • Tan BH, Wong PT-H, Bian J-S (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56:3–10

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Liang J, Zhang Z et al (2022) Cloning and molecular characterisation of a putative glyoxalase I Gene (HfGlX I-1) of daylily (Hemerocallis spp.). J Plant Biochem Biotechnol 32:265–273

    Article  Google Scholar 

  • Tanaka N, Konishi H, Khan MMK, Komatsu S (2004) Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol Genet Genom 270:485–496

    Article  CAS  Google Scholar 

  • Tang F, Li R, Zhou Y et al (2022) Genome-wide identification of cassava glyoxalase I genes and the potential function of MeGLYI-13 in iron toxicity tolerance. Int J Mol Sci 23:5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(Pt 1):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twalla JT, Ding B, Cao G et al (2022) Roles of stomata in gramineous crops growth and biomass production. Cereal Res Commun 50:603–616

    Article  CAS  Google Scholar 

  • Vezza ME, Llanes A, Travaglia C et al (2018) Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol Biochem 123:8–17

    Article  CAS  PubMed  Google Scholar 

  • Vistoli G, De Maddis D, Cipak A et al (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27

    Article  CAS  PubMed  Google Scholar 

  • Wakeel A, Xu M, Gan Y (2020) Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int J Mol Sci 21:728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Deng Y, Liu Z, Liao W (2021a) Hydrogen sulfide in plants: crosstalk with other signal molecules in response to abiotic stresses. Int J Mol Sci 22:12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Tan H, Zhang Y et al (2021b) Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere 263:128034

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2015) How jasmonates earned their laurels: past and present. J Plant Growth Regul 34:761–794

    Article  CAS  Google Scholar 

  • Wei H, Movahedi A, Xu C et al (2019) Heterologous overexpression of the Arabidopsis SnRK2.8 gene enhances drought and salt tolerance in Populus × euramericana cv ‘Nanlin895.’ Plant Biotechnol Rep 13:245–261

    Article  Google Scholar 

  • Wu Q, Gao S, Pan Y-B et al (2018) Heterologous expression of a Glyoxalase I gene from sugarcane confers tolerance to several environmental stresses in bacteria. PeerJ 6:e5873

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Pang H, Liu Y et al (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Chen Q, Chen L et al (2022) A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. Ecotoxicol Environ Saf 239:113630

    Article  CAS  PubMed  Google Scholar 

  • Xiang M, Li Y, Yang J et al (2021) Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ Pollut 278:116911

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Pu S, Xiong X et al (2021) Melatonin-assisted phytoremediation of Pb-contaminated soil using bermudagrass. Environ Sci Pollut Res 28:44374–44388

    Article  CAS  Google Scholar 

  • Xuan L, Li J, Wang X, Wang C (2020) Crosstalk between hydrogen sulfide and other signal molecules regulates plant growth and development. Int J Mol Sci 21:4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan G, Lv X, Gao G et al (2016) Identification and characterization of a glyoxalase I gene in a rapeseed cultivar with seed thermotolerance. Front Plant Sci 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan G, Xiao X, Wang N et al (2018) Genome-wide analysis and expression profiles of glyoxalase gene families in Chinese cabbage (Brassica rapa L). PLoS ONE 13:e0191159

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan G, Zhang M, Guan W et al (2023) Genome-wide identification and functional characterization of stress related glyoxalase genes in Brassica napus L. Int J Mol Sci 24:2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You X, Zhang W, Hu J et al (2019) FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Rep 38:345–359

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Mohammad F, Wani SH, Siddique KMH (2019) Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf 180:575–587

    Article  CAS  PubMed  Google Scholar 

  • Zang TM, Hollman DA, Crawford PA et al (2001) Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. J Biol Chem 276:4788–4795

    Article  CAS  PubMed  Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2020) Pre- sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.). Ecotoxicol Environ Saf 206:111392

    Article  CAS  PubMed  Google Scholar 

  • Zehra A, Choudhary S, Wani KI et al (2020) Exogenous abscisic acid mediates ROS homeostasis and maintains glandular trichome to enhance artemisinin biosynthesis in Artemisia annua under copper toxicity. Plant Physiol Biochem 156:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Xiong F, Yu X et al (2016) Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Plant Physiol Biochem 109:62–71

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Ren H-M, Tan Y-Q et al (2016) S-type anion channels SLAC1 and SLAH3 function as essential negative regulators of inward K+ channels and stomatal opening in Arabidopsis. Plant Cell 28:949–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Zhang N, Yin ZJ et al (2013) Analysis of differentially expressed genes in response to endogenous cytokinins during cotton leaf senescence. Biol Plant 57:425–432

    Article  CAS  Google Scholar 

  • Zhou S, Sauve R, Thannhauser TW (2009) Proteome changes induced by aluminium stress in tomato roots. J Exp Bot 60:1849–1857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

The present investigation was funded by the National Natural Science Foundation of China (No. 30972408), the China Postdoctoral Science Foundation (2020M671509), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Qianqian Zheng conceived the study and wrote the manuscript. Jianpan Xin added valuable comments and improved the paper. Chu Zhao contributed various inputs during the manuscript preparation. Runan Tian supervised and finalized the manuscript. All the authors read and approved the finalized manuscript.

Corresponding author

Correspondence to Runan Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Xin, J., Zhao, C. et al. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. Plant Cell Rep 43, 103 (2024). https://doi.org/10.1007/s00299-024-03186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03186-y

Keywords

Navigation