Skip to main content
Log in

Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

82 melon NAC (CmNAC) genes were identified in melon. We putatively identified the function of CmNAC gene in melon under salt stress.

Abstract

NAC transcription factor proteins play important roles in many biological processes, including plant development and stress responses. To date, few full-length melon NAC proteins have been identified. In this study, 82 melon NAC (CmNAC) genes were identified in the Cucumis melo L. genome. By interrogating our cDNA libraries and transcriptome data from melon under salt stress, and comparison of their phylogenetic relationship with Arabidopsis NAC salt stress-related genes, we putatively identified that the fourth clade of CmNAC genes were involved in the salt stress response, especially the second clade of the group IV of the phylogenetic tree. Expression analysis confirmed that eleven of the twelve CmNAC genes from the group IV were induced in melon seedling roots by salt stress; the other gene was down regulated by salt stress. The expression of CmNAC14 continually increased in 12 h under salt stress, and was selected for transformation into Arabidopsis for functional verification. Overexpression of CmNAC14 increased the sensitivity of transgenic Arabidopsis lines to salt stress, which were simultaneously demonstrated by reduced expression of abiotic stress-response genes and variation in several physiological indices. This study increases our knowledge and may enable further characterization of the roles of CmNAC family in the response to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TFs:

Transcription factors

PTFDB:

Plant transcription factor database

SSH:

Suppression subtractive hybridization

qRT-PCR:

Quantitative real-time PCR

EL:

Electrolyte leakage

MDA:

Malondialdehyde

References

  • Aslam M et al (2012) Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Mol Biol Rep 39:1–10

    Article  Google Scholar 

  • Balazadeh S et al (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Botía P, Navarro JM, Cerdá A, Martínez V (2005) Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur J Agron 23:243–253

    Article  Google Scholar 

  • Cheong YH, Sung SJ, Kim B-G, Pandey GK, Cho J-S, Kim K-N, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29:159–165

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Lambert A, Herouart D, Boncompagni E (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426:15–22

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  CAS  PubMed  Google Scholar 

  • Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93:1246–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Q et al (2012) Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep 39:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149:479–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wang G, Shen Y, Huang Z (2012) The wheat gene TaST can increase the salt tolerance of transgenic Arabidopsis. Plant Cell Rep 31:339–347

    Article  CAS  PubMed  Google Scholar 

  • Jeong JS et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via Flowering Locus T in Arabidopsis. Planta 226:647–654

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Lee AK, Yoon HK, Park CM (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88

    Article  CAS  PubMed  Google Scholar 

  • Kim S-G, Lee S, Seo PJ, Kim S-K, Kim J-K, Park C-M (2010) Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics 95:56–65

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 70:831–844

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Song X, Duan W, Huang Z, Liu G, Li Y, Hou X (2014) Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol Biol Rep 32:1–16

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Manaa A, Ahmed HB, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhang Y-C, Sang Y, Li Q-H, Yang H-Q (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–298

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. BBA Gen Regul Mech 1819(2):97–103

    CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  CAS  PubMed  Google Scholar 

  • Ooka H et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-López JN, Espín JC, del Amor F, Tudela J, Martínez V, Cerdá A, García-Cánovas F (2000) Purification and kinetic characterization of an anionic peroxidase from melon (Cucumis melo L.) cultivated under different salinity conditions. J Agr Food Chem 48:1537–1541

    Article  Google Scholar 

  • Sablowski RWM, Meyerowitz EM (1998) A homolog of no apical meristem is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Zhang S, Yin Y, Zhu D, Han L (2015) Genome-wide analysis of NAM-ATAF1, 2-CUC2 transcription factor family in Solanum lycopersicum. J Plant Bioch Biotechnol 24(2):176–183

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tran LSP et al (2004a) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP et al (2004b) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39

    Article  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe In 22:1227–1238

    Article  CAS  Google Scholar 

  • Wang N, Zheng Y, Xin H, Fang L, Li S (2012) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 32:1–15

    Google Scholar 

  • Wei S, Wang L, Zhang Y, Huang D (2013) Identification of early response genes to salt stress in roots of melon (Cucumis melo L.) seedlings. Mol Biology Rep 40:2915–2926

    Article  CAS  Google Scholar 

  • Wei S, Zhang F, Zhang Y, Wang L, Chen J, Huang D (2014) Comparative analysis of gene expression in two muskmelon cultivars (Cucumis melo L.) under salt stress. J Integr Agr 13:2132–2140

    Article  CAS  Google Scholar 

  • Wu Y et al (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59:191–203

    Article  CAS  PubMed  Google Scholar 

  • Xu J et al (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Deng C, Ouyang B, Ye Z (2011a) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38:857–863

    Article  CAS  PubMed  Google Scholar 

  • Yang SD, Seo PJ, Yoon HK, Park CM (2011b) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Bioph Res Co 379:985–989

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenetic analyses unravel the evolutionary history of Nac proteins in plants. Evol 66:1833–1848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Dr Doudou Guo for useful imaging technology support and Dr Lida Zhang for bioinformatic analysis of CmNACs. This work was supported by Grants from the National Natural Science Foundation of China (31372079), the Natural Science Foundation of Shanghai Science and Technology Committee (13ZR1422400), The construction of industrial technology system in watermelon and melon in Shanghai. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danfeng Huang.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Additional information

Communicated by Stefan Schillberg.

S. Wei and L. Gao both authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 183 kb)

Supplementary material 2 (DOC 5924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Gao, L., Zhang, Y. et al. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress. Plant Cell Rep 35, 1827–1839 (2016). https://doi.org/10.1007/s00299-016-1997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1997-8

Keywords

Navigation