Skip to main content
Log in

Enhancing optical, structural, thermal, electrical properties, and antibacterial activity in chitosan/polyvinyl alcohol blend with ZnO nanorods: polymer nanocomposites for optoelectronics and food/medical packaging applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work presents a comprehensive investigation into the development and characterization of novel nanocomposites composed of chitosan (Cs) and polyvinyl alcohol (PVA) with zinc oxide (ZnO) nanorods (NRs). The study begins with the successful synthesis of ZnO nanorods via the sol–gel technique with an average diameter of approximately 35 nm, as indicated by TEM image and histogram. These ZnO NRs were then seamlessly integrated into Cs/PVA polymer blend-based nanocomposite films through a casting process. The results reveal a series of noteworthy findings, where XRD patterns indicate an increase in intermolecular interactions, leading to softening of the Cs/PVA blend’s polymer chain backbone and disruption of crystalline regions. Complex interactions between ZnO NRs and functional groups within the Cs/PVA matrix are also evident from FTIR analysis, where the spectra show noticeable changes in the intensity and broadness of certain peaks when ZnO NRs concentrations increase. The optical feature are investigated by ultraviolet–visible tecnique (UV–Vis), where the surface plasmon resonance peak of ZnO NRs were observed and the optical energy gap were determined. Furthermore, thermogravimetric analysis (TGA) demonstrates improved thermal stability, owing to blend-NRs interactions that safeguard the structural integrity of Cs/PVA during exposure to elevated temperatures. DC electrical conductivity significantly increases with rising temperature and NRs content. The DC conductivity value of Cs/PVA blend filled with 12 wt% ZnO NRs at 373 K reached 3.39 × 10−9 S/cm, which increased by more than two orders of magnitude due to increased nanofiller bridging the gaps between localized states, and reducing potential barrier separation and facilitating charge carrier transfer. Furthermore, these nanocomposites exhibit enhanced antibacterial activity, with increased ZnO content correlating with elevated antimicrobial efficacy. These properties make the nanocomposites highly promising for potential in optoelectronic devices where their optical and electrical characteristics can be leveraged. Simultaneously, their demonstrated antibacterial properties make them appealing for applications in food and medical packaging, safeguarding product hygiene and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Tayyar NA, Youssef AM, Al-Hindi RR (2020) Antimicrobial packaging efficiency of ZnO–SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products. Food Packag Shelf Life 25:100523. https://doi.org/10.1016/j.fpsl.2020.100523

    Article  Google Scholar 

  2. Morsi MA, Pashameah RA, Sharma K, Alzahrani E, Farea MO, Al-Muntaser AA (2023) Hybrid MWCNTs/Ag nanofiller reinforced PVP/CMC blend-based polymer nanocomposites for multifunctional optoelectronic and nanodielectric applications. J Polym Environ 31:664–676. https://doi.org/10.1007/s10924-022-02656-2

    Article  CAS  Google Scholar 

  3. Mohiuddin SMUG, Saeed A, Alshahrie A, Memić A, Aljoud F, Abdullahi S, Organji HA, Salah N (2022) Carbon nanoparticles extracted from date palm fronds for fluorescence bioimaging: in vitro study. J Funct Biomater 13:218. https://doi.org/10.3390/jfb13040218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El Gohary HG, Alhagri IA, Qahtan TF, Al-Hakimi AN, Saeed A, Abolaban F, Alshammari EM, Asnag GM (2023) Reinforcement of structural, thermal and electrical properties and antibacterial activity of PVA/SA blend filled with hybrid nanoparticles (Ag and TiO2 NPs): nanodielectric for energy storage and food packaging industries. Ceram Int 49:20174–20184. https://doi.org/10.1016/j.ceramint.2023.03.141

    Article  CAS  Google Scholar 

  5. Al-Muntaser AA, Pashameah RA, Tarabiah AE, Alzahrani E, AlSubhi SA, Saeed A, Al-Harthi AM, Alwafi R, Morsi MA (2023) Structural, morphological, optical, electrical and dielectric features based on nanoceramic Li4Ti5O12 filler reinforced PEO/PVP blend for optoelectronic and energy storage devices. Ceram Int 49:18322–18333. https://doi.org/10.1016/j.ceramint.2023.02.204

    Article  CAS  Google Scholar 

  6. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA, Al Angari YM, Saeed A (2019) Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 nano-composites with special reference to the dye removal capability. J Inorg Organomet Polym Mater 29:2197–2213. https://doi.org/10.1007/s10904-019-01179-z

    Article  CAS  Google Scholar 

  7. Al-Muntaser AA, Alzahrani E, Abo-Dief HM, Saeed A, Alshammari EM, Al-Harthi AM, Tarabiah AE (2023) Tuning the structural, optical, electrical, and dielectric properties of PVA/PVP/CMC ternary polymer blend using ZnO nanoparticles for nanodielectric and optoelectronic devices. Opt Mater 140:113901. https://doi.org/10.1016/j.optmat.2023.113901

    Article  CAS  Google Scholar 

  8. Karki S, Gohain MB, Yadav D, Ingole PG (2021) Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: a review. Int J Biol Macromol 193:2121–2139. https://doi.org/10.1016/j.ijbiomac.2021.11.044

    Article  CAS  PubMed  Google Scholar 

  9. Sharma KP, Shin M, Awasthi GP, Poudel MB, Kim HJ, Yu C (2022) Chitosan polymer matrix-derived nanocomposite (CuS/NSC) for non-enzymatic electrochemical glucose sensor. Int J Biol Macromol 206:708–717. https://doi.org/10.1016/j.ijbiomac.2022.02.142

    Article  CAS  PubMed  Google Scholar 

  10. Das M, Sethy C, Kundu CN, Tripathy J (2023) Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: assessment of physicochemical and antibacterial properties. Int J Biol Macromol 239:124185. https://doi.org/10.1016/j.ijbiomac.2023.124185

    Article  CAS  PubMed  Google Scholar 

  11. Albdiry M, Al-Nayili A (2023) Ternary sulfonated graphene/polyaniline/carbon nanotubes nanocomposites for high performance of supercapacitor electrodes. Polym Bull 80:8245–8258. https://doi.org/10.1007/s00289-022-04495-6

    Article  CAS  Google Scholar 

  12. Al-Badri M, Albdiry M (2022) Enhanced electrical properties of ternary CNTs/PANI wrapped by sulfonated graphene nanocomposite for supercapacitor electrodes. J Mater Sci Mater Electron 33:675–682. https://doi.org/10.1007/s10854-021-07335-x

    Article  CAS  Google Scholar 

  13. Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X (2017) Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 103:234–241. https://doi.org/10.1016/j.ijbiomac.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  14. Al-badri M, Albdiry M (2020) Electrochemical performance of ternary s-GN/PANI/CNTs nanocomposite as supercapacitor power electrodes. J Period Eng Nat Sci 8:2484–2489

    Google Scholar 

  15. Albdiry M (2023) Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review. Polym Bull. https://doi.org/10.1007/s00289-023-05012-z

    Article  Google Scholar 

  16. Albdiry MT, Yousif BF (2014) Role of silanized halloysite nanotubes on structural, mechanical properties and fracture toughness of thermoset nanocomposites. Mater Des 57:279–288. https://doi.org/10.1016/j.matdes.2013.12.017

    Article  CAS  Google Scholar 

  17. Albdiry MT, Yousif BF (2019) Toughening of brittle polyester with functionalized halloysite nanocomposites. Compos B Eng 160:94–109. https://doi.org/10.1016/j.compositesb.2018.10.032

    Article  CAS  Google Scholar 

  18. Saeed A, Banoqitah E, Abdulwahed JAM, Alajmi F, Madkhli AY, Al-Marhaby FA, Albaidani K, Algethami M, Assran AS, Alwafi R, Asnag GM (2024) A comprehensive study on structural, optical, electrical, and dielectric properties of PVA–PVP/Ag–TiO2 nanocomposites for dielectric capacitor applications. J Alloys Compd 977:173412. https://doi.org/10.1016/j.jallcom.2023.173412

    Article  CAS  Google Scholar 

  19. Al-Muntaser AA, Alzahrani E, Saeed A, Al Naim AF, Abo-Dief HM, Qusti SY, Tarabiah AE (2023) An insight into the role of titanium oxide nanofiller on the structural, optical, electrical, and dielectric characteristics of PS/PVK composite. Phys Scr 98:075935. https://doi.org/10.1088/1402-4896/acde13

    Article  Google Scholar 

  20. Kesari P, Udayabhanu G, Roy A, Pal S (2023) Chitosan based titanium and iron oxide hybrid bio-polymeric nanocomposites as potential corrosion inhibitor for mild steel in acidic medium. Int J Biol Macromol 225:1323–1349. https://doi.org/10.1016/j.ijbiomac.2022.11.192

    Article  CAS  PubMed  Google Scholar 

  21. Dardeer HM, Abbas SA, El-Sayyad GS, Ali MF (2022) Effect of titanium dioxide nanoparticles and β-cyclodextrin polymer on physicochemical, antimicrobial, and antibiofilm properties of a novel chitosan-camphor polymer. Int J Biol Macromol 219:1062–1079. https://doi.org/10.1016/j.ijbiomac.2022.07.249

    Article  CAS  PubMed  Google Scholar 

  22. Salah N, Alfawzan AM, Allafi W, Baghdadi N, Saeed A, Alshahrie A, Al-Shawafi WM, Memic A (2021) Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polym Bull 78:261–281. https://doi.org/10.1007/s00289-020-03112-8

    Article  CAS  Google Scholar 

  23. Bashal AH, Khalil KD, Abu-Dief AM, El-Atawy MA (2023) Cobalt oxide-chitosan based nanocomposites: synthesis, characterization and their potential pharmaceutical applications. Int J Biol Macromol 253:126856. https://doi.org/10.1016/j.ijbiomac.2023.126856

    Article  CAS  PubMed  Google Scholar 

  24. Al-Muntaser AA, Banoqitah E, Morsi MA, Madkhli AY, Mohammed Abdulwahed JA, Alwafi R, Al Naim AF, Saeed A (2023) Fabrication and characterizations of nanocomposite flexible films of ZnO and polyvinyl chloride/poly(N-vinyl carbazole) polymers for dielectric capacitors. Arab J Chem 16:105171. https://doi.org/10.1016/j.arabjc.2023.105171

    Article  CAS  Google Scholar 

  25. Shanshool HM, Yahaya M, Yunus WMM, Abdullah IY (2016) Investigation of energy band gap in polymer/ZnO nanocomposites. J Mater Sci Mater Electron 27:9804–9811. https://doi.org/10.1007/s10854-016-5046-8

    Article  CAS  Google Scholar 

  26. Rashki S, Dawi EA, Zilaei MR, Safardoust-Hojaghan H, Ghanbari M, Ryadh A, Lafta HA, Khaledi A, Salavati-Niasari M (2023) ZnO/chitosan nanocomposites as a new approach for delivery LL37 and evaluation of the inhibitory effects against biofilm-producing methicillin-resistant staphylococcus aureus isolated from clinical samples. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.127583

    Article  PubMed  Google Scholar 

  27. Zheng S, Li X, Zhang J, Wang J, Zhao C, Hu X, Wu Y, He Y (2023) One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of Rhodamine B under ultrasonic vibration. J Environ Sci 125:1–13. https://doi.org/10.1016/j.jes.2021.10.028

    Article  CAS  Google Scholar 

  28. Sebak MA, Qahtan TF, Asnag GM, Abdallah EM (2022) The role of TiO2 nanoparticles in the structural, thermal and electrical properties and antibacterial activity of PEO/PVP blend for energy storage and antimicrobial application. J Inorg Organomet Polym Mater 32:4715–4728. https://doi.org/10.1007/s10904-022-02440-8

    Article  CAS  Google Scholar 

  29. Tarabiah AE, Alhadlaq HA, Alaizeri ZM, Ahmed AAA, Asnag GM, Ahamed M (2022) Enhanced structural, optical, electrical properties and antibacterial activity of PEO/CMC doped ZnO nanorods for energy storage and food packaging applications. J Polym Res 29:167. https://doi.org/10.1007/s10965-022-03011-8

    Article  CAS  Google Scholar 

  30. Cai-Rong D, Bing-Chu C, Shu-Wei L, He-Zhou W (2007) Lasing with the shortest wavelength in substituted ZnO and lasing of ZnO microcrystal or scattering gain medium in closed microcavity. In: Proceeding of SPIE, pp. 682813. https://doi.org/10.1117/12.767911

  31. Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett 72:3270–3272. https://doi.org/10.1063/1.121620

    Article  CAS  Google Scholar 

  32. Wang H, Li K, Tao Y, Li J, Li Y, Gao L-L, Jin G-Y, Duan Y (2017) Smooth ZnO: Al–AgNWs composite electrode for flexible organic light-emitting device. Nanoscale Res Lett 12:77. https://doi.org/10.1186/s11671-017-1841-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suwanboon S, Amornpitoksuk P, Bangrak P, Randorn C (2014) Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods. Ceram Int 40:975–983. https://doi.org/10.1016/j.ceramint.2013.06.094

    Article  CAS  Google Scholar 

  34. Labuayai S, Promarak V, Maensiri S (2009) Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl Phys A 94:755–761. https://doi.org/10.1007/s00339-008-4984-2

    Article  CAS  Google Scholar 

  35. van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242. https://doi.org/10.1016/j.carbpol.2014.07.039

    Article  CAS  PubMed  Google Scholar 

  36. Knaul JZ, Hudson SM, Creber KAM (1999) Improved mechanical properties of chitosan fibers. J Appl Polym Sci 72:1721–1732. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13%3c1721::AID-APP8%3e3.0.CO;2-V

    Article  CAS  Google Scholar 

  37. Bodmeier R, Oh K-H, Pramar Y (1989) Preparation and evaluation of drug-containing chitosan beads. Drug Dev Ind Pharm 15:1475–1494. https://doi.org/10.3109/03639048909062758

    Article  CAS  Google Scholar 

  38. Laka M, Chernyavskaya S (2006) Preparation of chitosan powder and investigation of its properties. Proc-Estonian Acad Sci Chem. https://doi.org/10.3176/chem.2006.2.04

    Article  Google Scholar 

  39. Vargas Villanueva JG, Sarmiento Huertas PA, Galan FS, Esteban Rueda RJ, Briceño Triana JC, Casas Rodriguez JP (2019) Bio-adhesion evaluation of a chitosan-based bone bio-adhesive. Int J Adhes Adhes 92:80–88. https://doi.org/10.1016/j.ijadhadh.2019.04.009

    Article  CAS  Google Scholar 

  40. Patrulea V, Ostafe V, Borchard G, Jordan O (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426. https://doi.org/10.1016/j.ejpb.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  41. Pacheco KML, Torres BBM, Sanfelice RC, da Costa MM, Assis L, Marques RB, Filho ALMM, Tim CR, Pavinatto A (2023) Chitosan and chitosan/turmeric-based membranes for wound healing: production, characterization and application. Int J Biol Macromol 253:127425. https://doi.org/10.1016/j.ijbiomac.2023.127425

    Article  CAS  PubMed  Google Scholar 

  42. Vazquez-Ayala L, Del Ángel-Olarte C, Escobar-García DM, Rosales-Mendoza S, Solis-Andrade I, Pozos-Guillén A, Gabriela P (2023) Chitosan sponges loaded with metformin and microalgae as dressing for wound healing: a study in diabetic bio-models. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.127691

    Article  PubMed  Google Scholar 

  43. Pantić M, Maver U, Rožanc J, Vihar B, Andrejč DC, Knez Ž, Novak Z (2023) Evaluation of ethanol-induced chitosan aerogels with human osteoblast cells. Int J Biol Macromol 253:126694. https://doi.org/10.1016/j.ijbiomac.2023.126694

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal T, Chiesa I, Costantini M, Lopamarda A, Tirelli MC, Borra OP, Varshapally SVS, Kumar YAV, Koteswara Reddy G, De Maria C, Zhang LG, Maiti TK (2023) Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol 246:125669. https://doi.org/10.1016/j.ijbiomac.2023.125669

    Article  CAS  PubMed  Google Scholar 

  45. Lekhavadhani S, Shanmugavadivu A, Selvamurugan N (2023) Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. Int J Biol Macromol 251:126238. https://doi.org/10.1016/j.ijbiomac.2023.126238

    Article  CAS  PubMed  Google Scholar 

  46. Govindaraj M, Srivastava A, Muthukumaran MK, Tsai P-C, Lin Y-C, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J (2023) Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 253:126680. https://doi.org/10.1016/j.ijbiomac.2023.126680

    Article  CAS  PubMed  Google Scholar 

  47. Pathak R, Bhatt S, Punetha VD, Punetha M (2023) Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: a review. Int J Biol Macromol 253:127369. https://doi.org/10.1016/j.ijbiomac.2023.127369

    Article  CAS  PubMed  Google Scholar 

  48. Tian B, Liu J (2023) Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int J Biol Macromol 235:123902. https://doi.org/10.1016/j.ijbiomac.2023.123902

    Article  CAS  PubMed  Google Scholar 

  49. Andres Y, Giraud L, Gerente C, Le Cloirec P (2007) Antibacterial effects of chitosan powder: mechanisms of action. Environ Technol 28:1357–1363. https://doi.org/10.1080/09593332808618893

    Article  CAS  PubMed  Google Scholar 

  50. Wan Y, Wang T, Wang X, Ma L, Yang L, Li Q, Wang X (2023) Antibacterial activity of juglone @ chitosan nanoemulsion against Staphylococcus aureus and its effect on pork shelf life. Int J Biol Macromol 253:127273. https://doi.org/10.1016/j.ijbiomac.2023.127273

    Article  CAS  PubMed  Google Scholar 

  51. Awwad NS, El-Kader MFHA, Ibrahium HA, Asnag GM, Morsi MA (2021) Green synthesis of different ratios from bimetallic gold: silver nanoparticles core@shell via laser ablation scattered in chitosan–PVA matrix and its electrical conductivity behavior. Compos Commun 24:100678. https://doi.org/10.1016/j.coco.2021.100678

    Article  Google Scholar 

  52. Patel SR, Patel IR, Patel NH, Patel BV (2023) Microwave-assisted fabrication for synthesis of magnetite chitosan-modified polymer composite hydrogel as rapid removal adsorbent for effective remediation of hazardous contaminants. Polym Bull. https://doi.org/10.1007/s00289-023-04721-9

    Article  Google Scholar 

  53. Yang C, Ding X, Yang C, Shang L, Zhao Y (2023) Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem Eng J 456:140886. https://doi.org/10.1016/j.cej.2022.140886

    Article  CAS  Google Scholar 

  54. Ke C-L, Deng F-S, Chuang C-Y, Lin C-H (2021) Antimicrobial actions and applications of chitosan. Polymers. https://doi.org/10.3390/polym13060904

    Article  PubMed  PubMed Central  Google Scholar 

  55. Karimzadeh Z, Gharekhani A, Rahimpour E, Jouyban A (2023) Dual-emission ratiometric fluorescent probe based on N-doped CQDs@UiO-66/PVA nanocomposite hydrogel for quantification of pethidine in human plasma. Microchim Acta 190:128. https://doi.org/10.1007/s00604-023-05703-4

    Article  CAS  Google Scholar 

  56. Alharbi KH, Alharbi W, El-Morsy MA, Farea MO, Menazea AA (2023) Optical, thermal, and electrical characterization of polyvinyl pyrrolidone/carboxymethyl cellulose blend scattered by tungsten-trioxide nanoparticles. Polymers. https://doi.org/10.3390/polym15051223

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981. https://doi.org/10.1016/j.progpolymsci.2009.05.003

    Article  CAS  Google Scholar 

  58. Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML (2021) Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 600:120478. https://doi.org/10.1016/j.ijpharm.2021.120478

    Article  CAS  PubMed  Google Scholar 

  59. Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56:1307–1344. https://doi.org/10.1080/03602559.2016.1275684

    Article  CAS  Google Scholar 

  60. Venkata Subba Rao C, Ravi M, Raja V, Balaji Bhargav P, Sharma AK, Narasimha Rao VVR (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536. https://doi.org/10.1007/s13726-012-0058-6

    Article  CAS  Google Scholar 

  61. Aziz SB (2016) Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45:736–745. https://doi.org/10.1007/s11664-015-4191-9

    Article  CAS  Google Scholar 

  62. Yusof YM, Illias HA, Kadir MFZ (2014) Incorporation of NH4Br in PVA–chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 20:1235–1245. https://doi.org/10.1007/s11581-014-1096-1

    Article  CAS  Google Scholar 

  63. Buraidah MH, Arof AK (2011) Characterization of chitosan/PVA blended electrolyte doped with NH4I. J Non Cryst Solids 357:3261–3266. https://doi.org/10.1016/j.jnoncrysol.2011.05.021

    Article  CAS  Google Scholar 

  64. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482. https://doi.org/10.1016/j.electacta.2009.05.011

    Article  CAS  Google Scholar 

  65. Kayani ZN, Saleemi F, Batool I (2015) Effect of calcination temperature on the properties of ZnO nanoparticles. Appl Phys A 119:713–720. https://doi.org/10.1007/s00339-015-9019-1

    Article  CAS  Google Scholar 

  66. Ashraf R, Riaz S, Kayani ZN, Naseem S (2015) Effect of calcination on properties of ZnO nanoparticles. Mater Today Proc 2:5468–5472. https://doi.org/10.1016/j.matpr.2015.11.071

    Article  Google Scholar 

  67. Zagal-Padilla CK, García-Sandoval J, Gamboa SA (2022) A feasible and low-cost green route to prepare ZnO with n or p-type conductivity by changing the parsley extract concentration. J Alloys Compd 891:162087. https://doi.org/10.1016/j.jallcom.2021.162087

    Article  CAS  Google Scholar 

  68. Qiao F, Sun K, Liu W, Xie Y, Chu H (2022) Bandgap modulation of ZnO/ZnS heterostructures through ion exchange and their efficient transport properties. Vacuum 196:110788. https://doi.org/10.1016/j.vacuum.2021.110788

    Article  CAS  Google Scholar 

  69. Karpuraranjith M, Thambidurai S (2017) Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO–PVP) nanocomposite for better thermal and antibacterial activity. Int J Biol Macromol 104:1753–1761. https://doi.org/10.1016/j.ijbiomac.2017.02.079

    Article  CAS  PubMed  Google Scholar 

  70. Elashmawi IS, Ismail AM, Abdelghany AM (2023) The incorporation of polypyrrole (PPy) in CS/PVA composite films to enhance the structural, optical, and the electrical conductivity. Polym Bull 80:11379–11399. https://doi.org/10.1007/s00289-022-04611-6

    Article  CAS  Google Scholar 

  71. Hezma AM, Rajeh A, Mannaa MA (2019) An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf A 581:123821. https://doi.org/10.1016/j.colsurfa.2019.123821

    Article  CAS  Google Scholar 

  72. Alshehari AM, Salim E, Oraby AH (2021) Structural, optical, morphological and mechanical studies of polyethylene oxide/sodium alginate blend containing multi-walled carbon nanotubes. J Mater Res Technol 15:5615–5622. https://doi.org/10.1016/j.jmrt.2021.10.117

    Article  CAS  Google Scholar 

  73. Garnica-Palafox IM, Estrella-Monroy HO, Benítez-Martínez JA, Bizarro M, Sánchez-Arévalo FM (2022) Influence of genipin and multi-walled carbon nanotubes on the dye capture response of CS/PVA hybrid hydrogels. J Polym Environ 30:4690–4709. https://doi.org/10.1007/s10924-022-02534-x

    Article  CAS  Google Scholar 

  74. Ezati P, Riahi Z, Rhim J-W (2022) CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocolloids 122:107104. https://doi.org/10.1016/j.foodhyd.2021.107104

    Article  CAS  Google Scholar 

  75. Huang J, Yang H, Chen M, Ji T, Hou Z, Wu M (2017) An infrared spectroscopy study of PES PVP blend and PES-g-PVP copolymer. Polym Test 59:212–219. https://doi.org/10.1016/j.polymertesting.2017.02.005

    Article  CAS  Google Scholar 

  76. Tommalieh MJ, Ibrahium HA, Awwad NS, Menazea AA (2020) Gold nanoparticles doped polyvinyl alcohol/chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 1221:128814. https://doi.org/10.1016/j.molstruc.2020.128814

    Article  CAS  Google Scholar 

  77. Abdallah EM, Asnag GM, Morsi MA, Aljohani M, Albalwa AN, Yassin AY (2023) Elucidation of the effect of hybrid copper/selenium nanofiller on the optical, thermal, electrical, mechanical properties and antibacterial activity of polyvinyl alcohol/carboxymethyl cellulose blend. Polym Eng Sci 63:1974–1988. https://doi.org/10.1002/pen.26339

    Article  CAS  Google Scholar 

  78. Abdallah EM, Morsi MA, Asnag GM, Tarabiah AE (2022) Structural, optical, thermal, and dielectric properties of carboxymethyl cellulose/sodium alginate blend/lithium titanium oxide nanoparticles: biocomposites for lithium-ion batteries applications. Int J Energy Res 46:10741–10757. https://doi.org/10.1002/er.7877

    Article  CAS  Google Scholar 

  79. Almashhori K, Ali TT, Saeed A, Alwafi R, Aly M, Al-Hazmi FE (2020) Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. New J Chem 44:562–570. https://doi.org/10.1039/C9NJ03258D

    Article  CAS  Google Scholar 

  80. Al-Muntaser AA, Pashameah RA, Saeed A, Alwafi R, Alzahrani E, AlSubhi SA, Yassin AY (2023) Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J Mater Sci Mater Electron 34:678. https://doi.org/10.1007/s10854-023-10104-7

    Article  CAS  Google Scholar 

  81. Rehman WU, Khattak MTN, Saeed A, Shaheen K, Shah Z, Hussain S, Bakhsh EM, Alraddadi HM, Fagieh TM, Akhtar K, Khan SB, Khan SA (2023) Co3O4/NiO nanocomposite as a thermocatalytic and photocatalytic material for the degradation of malachite green dye. J Mater Sci Mater Electron 34:15. https://doi.org/10.1007/s10854-022-09428-7

    Article  CAS  Google Scholar 

  82. Saeed A, Abolaban F, Al-Mhyawi SR, Albaidani K, Al Garni SE, Al-Marhaby FA, Alwafi R, Djouider F, Qahtan TF, Asnag GM (2023) Improving the polyethylene oxide/carboxymethyl cellulose blend’s optical and electrical/dielectric performance by incorporating gold quantum dots and copper nanoparticles: nanocomposites for energy storage applications. J Mater Res Technol 24:8241–8251. https://doi.org/10.1016/j.jmrt.2023.05.073

    Article  CAS  Google Scholar 

  83. John K, Mathew S (2022) Optical and dielectric investigations on Ag: CdZnTe hybrid polyvinyl alcohol freestanding films. J Non Cryst Solids 577:121321. https://doi.org/10.1016/j.jnoncrysol.2021.121321

    Article  CAS  Google Scholar 

  84. Damoom MM, Saeed A, Alshammari EM, Alhawsawi AM, Yassin AY, Abdulwahed JAM, Al-Muntaser AA (2023) The role of TiO2 nanoparticles in enhancing the structural, optical, and electrical properties of PVA/PVP/CMC ternary polymer blend: nanocomposites for capacitive energy storage. J Sol–Gel Sci Technol. https://doi.org/10.1007/s10971-023-06223-6

    Article  Google Scholar 

  85. Atta MM, Henaish AMA, Elbasiony AM, Taha EO, Dorgham AM (2022) Structural, optical, and thermal properties of PEO/PVP blend reinforced biochar. Opt Mater 127:112268. https://doi.org/10.1016/j.optmat.2022.112268

    Article  CAS  Google Scholar 

  86. Ye G, Gu T, Chen B, Bi H, Hu Y (2023) Mechanical, thermal properties and shape memory behaviors of PLA/PCL/PLA-g-GMA blends. Polym Eng Sci 63:2084–2092. https://doi.org/10.1002/pen.26347

    Article  CAS  Google Scholar 

  87. Askary AE, Awwad NS, Ibrahium HA, El-Morsy MA, Eed EM, Asnag GM, Menazea AA (2022) Synthesis of nanostructured Bi2O3NPs using laser ablation technique and its effect on the optical, thermal, and conductivity characterization of the PEO/CMC blend. J Polym Res 29:193. https://doi.org/10.1007/s10965-022-03030-5

    Article  CAS  Google Scholar 

  88. Xu J, Liu Z, Wang J, Liu P, Ahmad M, Zhang Q, Zhang B (2022) Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J Colloid Interface Sci 607:1036–1049. https://doi.org/10.1016/j.jcis.2021.09.038

    Article  CAS  PubMed  Google Scholar 

  89. Sarkhel R, Ganguly P, Das P, Bhowal A, Sengupta S (2023) Synthesis of biodegradable PVA/cellulose polymer composites and their application in dye removal. Environ Qual Manag 32:313–323. https://doi.org/10.1002/tqem.21920

    Article  Google Scholar 

  90. Liu Y, Su S, Huang H, Liang Y (2019) Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Compos B Eng 168:236–242. https://doi.org/10.1016/j.compositesb.2018.12.063

    Article  Google Scholar 

  91. Aziz SB, Abdullah OG, Hussein SA, Ahmed HM (2017) Effect of PVA blending on structural and ion transport properties of CS: AgNt-based polymer electrolyte membrane. Polymers. https://doi.org/10.3390/polym9110622

    Article  PubMed  PubMed Central  Google Scholar 

  92. Basavaraja C, Kim JK, Huh DS (2013) Characterization and temperature-dependent conductivity of polyaniline nanocomposites encapsulating gold nanoparticles on the surface of carboxymethyl cellulose. Mater Sci Eng B 178:167–173. https://doi.org/10.1016/j.mseb.2012.11.001

    Article  CAS  Google Scholar 

  93. Davis PW, Shilliday TS (1960) Some optical properties of cadmium telluride. Phys Rev 118:1020–1022. https://doi.org/10.1103/PhysRev.118.1020

    Article  CAS  Google Scholar 

  94. Aziz SB, Abdullah RM, Rasheed MA, Ahmed HM (2017) Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers. https://doi.org/10.3390/polym9080338

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhao G, Mu X, Ma D, Wang S, Pan J, Cui J, Qi M (2023) Dielectric and mechanical properties of TiO2/polyimide composites with low dielectric constant. Polym Eng Sci 63:1953–1960. https://doi.org/10.1002/pen.26337

    Article  CAS  Google Scholar 

  96. Kumar A, Deka M, Banerjee S (2010) Enhanced ionic conductivity in oxygen ion irradiated poly(vinylidene fluoride–hexafluoropropylene) based nanocomposite gel polymer electrolytes. Solid State Ionics 181:609–615. https://doi.org/10.1016/j.ssi.2010.02.027

    Article  CAS  Google Scholar 

  97. Al-Muntaser AA, Alzahrani E, Abo-Dief HM, Saeed A, Al-Marhaby FA, Al-Harthi AM, Tarabiah AE (2023) Enhancement of the structural, optical, and dispersion performance of polyvinyl alcohol via coronene additive for optoelectronic applications. Phys Scr 98:115964. https://doi.org/10.1088/1402-4896/ad0267

    Article  Google Scholar 

  98. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. https://doi.org/10.1038/28818

    Article  CAS  Google Scholar 

  99. Dhatarwal P, Sengwa RJ, Choudhary S (2018) Effectively improved ionic conductivity of montmorillonite clay nanoplatelets incorporated nanocomposite solid polymer electrolytes for lithium ion-conducting devices. SN Appl Sci 1:112. https://doi.org/10.1007/s42452-018-0119-3

    Article  CAS  Google Scholar 

  100. Abdelrazek EM, Asnag GM, Oraby AH, Abdelghany AM, Alshehari AM, Gumaan MS (2020) Structural, optical, thermal, morphological and electrical studies of PEMA/PMMA blend filled with CoCl2 and LiBr as mixed filler. J Electron Mater 49:6107–6122. https://doi.org/10.1007/s11664-020-08342-0

    Article  CAS  Google Scholar 

  101. Abdelrazek EM, Asnag GM, Oraby AH, Abdelghany AM, Alshehari AM (2020) Effect of addition of a mixed filler of CoCl2 and LiBr into PEMA and its morphological, thermal and electrical properties. Bull Mater Sci 43:150. https://doi.org/10.1007/s12034-020-02149-9

    Article  CAS  Google Scholar 

  102. Tekin D, Birhan D, Kiziltas H (2020) Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater Chem Phys 251:123067. https://doi.org/10.1016/j.matchemphys.2020.123067

    Article  CAS  Google Scholar 

  103. Wang H, Gong X, Miao Y, Guo X, Liu C, Fan Y-Y, Zhang J, Niu B, Li W (2019) Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan–ZnO nanoparticles. Food Chem 283:397–403. https://doi.org/10.1016/j.foodchem.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  104. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852. https://doi.org/10.1002/adfm.200801081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported via funding from Prince Sattam Bin Abdulaziz University, project number (PSAU/2023/R/1445).

Funding

Prince Sattam bin Abdulaziz University, PSAU/2023/R/1445, Talal F. Qahtan.

Author information

Authors and Affiliations

Authors

Contributions

Abdu Saeed: Validation; Writing—review and editing. I. Guizani: Validation; Conceptualization. F.E. Hanash: Methodology; Data curation. G.M. Asnag: Supervision; Software; Writing the original draft. Amani M. Al-Harthi: Validation; Writing—review and editing. Reem Alwafi: Validation; Writing—review and editing. Talal F. Qahtan: Funding, Second review and editing. M.A. Morsi: Visualization; Writing—review and editing. Awatef S. Assran: Validation; Writing—review and editing.

Corresponding authors

Correspondence to Abdu Saeed, G. M. Asnag or Awatef S. Assran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A., Guizani, I., Hanash, F.E. et al. Enhancing optical, structural, thermal, electrical properties, and antibacterial activity in chitosan/polyvinyl alcohol blend with ZnO nanorods: polymer nanocomposites for optoelectronics and food/medical packaging applications. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05270-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05270-5

Keywords

Navigation