Skip to main content
Log in

The synergistic effect of an organic phosphate salt nucleating agent and CaCO3 in isotactic polypropylene

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, isotactic polypropylene (iPP) was modified with an organic phosphate salt nucleating agent LPN-9081 and CaCO3. The synergistic effect of LNP-9801 and CaCO3 in iPP was investigated using differential scanning calorimetry (DSC), scanning electronic microscope (SEM), and mechanical property tests. The DSC results showed that the peak crystallization temperature (Tc) of modified iPP was increased by about 10 °C when compared to that of pure iPP, this indicates that LNP-9801 and CaCO3 increased the crystallization rate of iPP. The mechanical property tests demonstrated significant improvements in bending modulus and impact strength of modified iPP (impact strength increased by 33.9%, flexural modulus increased by 100.1%), which achieved an optimal balance of stiffness and toughness. Furthermore, the SEM results indicated that LPN-9081 contributed to the good dispersion of CaCO3 in the iPP matrix. All of the above results show that organic phosphate salt nucleating agent LPN-9081 and CaCO3 had good synergistic effects in iPP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang Q, Jia H, Wang J (2012) Effects of nucleating agents on crystallization behavior and mechanical properties of high-fluid polypropylene. Iran Polym J 21:201–209

    Article  CAS  Google Scholar 

  2. Tsioptsias C, Leontiadis K, Tzimpilis E (2020) Polypropylene nanocomposite fibers: a review of current trends and new developments. J Plast Film Sheeting 37:283–311

    Article  Google Scholar 

  3. Horváth F, Bodrogi D, Hilt B (2022) Organogelators with dual β- and α-nucleating ability in isotactic polypropylene. J Therm Anal Calorim 147:9451–9468

    Article  Google Scholar 

  4. Liu L, Yang W, Chen X (2023) Ethylene comonomer-directed epitaxial nucleation and growth of β-nucleated isotactic polypropylene. Macromolecules 56:1965–1972

    Article  CAS  Google Scholar 

  5. Bazan P, Salasińska K, Kuciel S (2021) Flame retardant polypropylene reinforced with natural additives. Ind Crops Prod 164:113356–113368

    Article  CAS  Google Scholar 

  6. Ichim M, Stelea L, Filip I (2022) Thermal and mechanical characterization of coir fiber–reinforced polypropylene biocomposites. Crystals 12:1249–12665

    Article  CAS  Google Scholar 

  7. Tang W, Xu J, Fan Q (2022) Rheological behavior and mechanical properties of ultra-high-filled wood fiber/polypropylene composites using waste wood sawdust and recycled polypropylene as raw materials. Constr Build Mater 351:128977–128989

    Article  CAS  Google Scholar 

  8. Castillo LA, Barbosa SE (2020) Comparative analysis of crystallization behavior induced by different mineral fillers in polypropylene nanocomposites. Nanomater Nanotechnol 10:184798042092275

    Article  Google Scholar 

  9. Girones J, Vo LTT, Haudin J-M (2017) Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer 127:220–231

    Article  CAS  Google Scholar 

  10. Vakili MH, Ebadi-Dehaghani H, Haghshenas-Fard M (2011) Crystallization and thermal conductivity of CaCO3 nanoparticle filled polypropylene. J Macromol Sci Part B 50:1637–1645

    Article  Google Scholar 

  11. Gao S, Li B, Bai P (2011) Effect of polysiloxane and silane-modified SiO2 on a novel intumescent flame retardant polypropylene system. Polym Adv Technol 22:2609–2616

    Article  CAS  Google Scholar 

  12. Hu N, Tang E, Chang D (2021) Modification of CaCO3 nanoparticle by styrene-acrylic polymer emulsion spraying and its application in polypropylene material. Powder Technol 394:83–91

    Article  CAS  Google Scholar 

  13. Gu Y, Liu Y, Fan Z (2023) Influence of β-nucleating compound agents on the mechanical properties and crystallization behavior of polypropylene random copolymer. J Wuhan Univ Technol Mater Sci Ed 38:237–243

    Article  CAS  Google Scholar 

  14. Zhang Y, Liu H, Zhang L (2013) Influence of β nucleation agent on the dispersion of nano-CaCO3 in isotactic polypropylene matrix. J Appl Polym Sci 128:3382–3389

    Article  CAS  Google Scholar 

  15. Thenepalli T, Jun AY, Han C (2015) A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean J Chem Eng 32:1009–1022

    Article  CAS  Google Scholar 

  16. Al-Samhan M, Al-Attar F (2022) Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3. Surf Interfaces 31:102055–102061

    Article  CAS  Google Scholar 

  17. Younis AA, El-Wakil AA (2021) New composites from waste polypropylene/eggshell characterized by high flame retardant and mechanical properties. Fibers Polym 22:3456–3468

    Article  CAS  Google Scholar 

  18. García-López D, Merino JC, Pastor JM (2003) Influence of the CaCO3 nanoparticles on the molecular orientation of the polypropylene matrix. J Appl Polym Sci 88:947–952

    Article  Google Scholar 

  19. Li C-q, Liang C, Chen Z-m (2021) Surface modification of calcium carbonate: a review of theories, methods and applications. J Central South Univ 28:2589–2611

    Article  CAS  Google Scholar 

  20. Lv X, Kang M, Yuan L (2020) Quantitative evaluation of fillers dispersion state in CaCO3/polypropylene composites through visualization and fractal analysis. Polym Compos 41:1605–1613

    Article  CAS  Google Scholar 

  21. Zhu YD, Allen GC, Jones PG (2014) Dispersion characterisation of CaCO3 particles in PP/CaCO3 composites. Compos A Appl Sci Manuf 60:38–43

    Article  CAS  Google Scholar 

  22. Ersoy O, Köse H (2020) Comparison of the effect of reactive and nonreactive treatments on the dispersion characteristics of a calcium carbonate (calcite) filler in a polypropylene matrix composite. Polym Compos 41:3483–3490

    Article  CAS  Google Scholar 

  23. Hernández Y, Lozano T, Morales-Cepeda AB (2019) Stearic acid as interface modifier and lubricant agent of the system: polypropylene/calcium carbonate nanoparticles. Polym Eng Sci 59:E279–E285

    Article  Google Scholar 

  24. Jing X, Gong W, Feng Z (2017) Novel comb-like copolymer dispersant for polypropylene/CaCO3 composites and Its influence on dispersion, crystallization, mechanical, and thermal properties. Polym-Plast Technol Eng 57:986–996

    Article  Google Scholar 

  25. Al-Samhan M, Al-Attar F, Al-Fadhli J (2021) The influence of nano CaCO3 on nucleation and interface of PP nano composite: matrix processability and impact resistance. Polymers 13:1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jing Y, Nai X, Dang L (2018) Reinforcing polypropylene with calcium carbonate of different morphologies and polymorphs. Sci Eng Compos Mater 25:745–751

    Article  CAS  Google Scholar 

  27. Jiang X, Fan Y, Li F (2012) Preparation and properties of dynamically cured polypropylene (PP)/maleic anhydride–grafted polypropylene (MAH-g-PP)/calcium carbonate (CaCO3)/epoxy composites. J Thermoplast Compos Mater 26:1192–1205

    Article  Google Scholar 

  28. Yoshimoto S, Ueda T, Yamanaka K (2001) Epitaxial act of sodium 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate on isotactic polypropylene. Polymer 42:9627–9631

    Article  CAS  Google Scholar 

  29. Zhang Y-F, Xin Z (2006) Effects of substituted aromatic heterocyclic phosphate salts on properties, crystallization, and melting behaviors of isotactic polypropylene. J Appl Polym Sci 100:4868–4874

    Article  CAS  Google Scholar 

  30. Li J, Liang Z, Gao C (2021) The application of organic phosphate nucleating agents in polypropylene with different molecular weights. Crystals 11:1543

    Article  CAS  Google Scholar 

  31. Long L, He W, Zhang M (2015) Nucleation effects of sodium and ammonium salts of 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate in isotactic polypropylene. Polym Eng Sci 55:22–28

    Article  Google Scholar 

  32. Thio YS, Argon AS, Cohen RE (2002) Toughening of isotactic polypropylene with CaCO3 particles. Polymer 43:3661–3674

    Article  CAS  Google Scholar 

  33. Peng Y, Musah M, Via B (2021) Calcium carbonate particles filled homopolymer polypropylene at different loading levels: mechanical properties characterization and materials failure analysis. J Compos Sci 5:302

    Article  CAS  Google Scholar 

  34. Zhang YF, Zhou PZ, Li Y (2019) The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene. Polym Adv Technol 30:1777–1788

    Article  CAS  Google Scholar 

  35. Sarturato ACP, Dos Anjos EGR, Marini J (2023) Polypropylene/talc/graphene nanoplates (GNP) hybrid composites: effect of GNP content on the thermal, rheological, mechanical, and electrical properties. J Appl Polym Sci 140:e53657

    Article  CAS  Google Scholar 

  36. Lv Z, Hu C, Xue J (2008) Effect of zeolite 5A on the crystalline behavior of polypropylene (PP) in PP/β-nucleating agent system. Polym Compos 29:1291–1296

    Article  Google Scholar 

  37. Ding Q, Fu H, Hua C (2020) Effect of β-nucleating agent on crystallization of wollastonite-filled recycled polypropylene composites. J Therm Anal Calorim 144:713–719

    Article  Google Scholar 

  38. Grząbka-Zasadzińska A, Klapiszewski Ł, Jesionowski T (2020) Functional MgO–lignin hybrids and their application as fillers for polypropylene composites. Molecules 25:864

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aguilar H, Yazdani-Pedram M, Toro P (2014) Synergic effect of two inorganic fillers on the mechanical and thermal properties of hybrid polypropylene composites. J Chil Chem Soc 59:2468–2473

    Article  Google Scholar 

  40. Chen H, Wang M, Lin Y (2007) Morphology and mechanical property of binary and ternary polypropylene nanocomposites with nanoclay and CaCO3 particles. J Appl Polym Sci 106:3409–3416

    Article  CAS  Google Scholar 

  41. Chen M, Wan C, Shou W (2008) Effects of interfacial adhesion on properties of polypropylene/Wollastonite composites. J Appl Polym Sci 107:1718–1723

    Article  CAS  Google Scholar 

  42. Yao J, Hu H, Sun Z (2021) Synchronously strengthen and toughen polypropylene using tartaric acid-modified nano-CaCO3. Nanomaterials 11:2493–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang X, Zhao S, Meng X (2018) Effect of the metal phenylphosphonates on the nonisothermal crystallization and performance of isotactic polypropylene. J Polym Sci Part B: Polym Phys 57:161–173

    Article  Google Scholar 

  44. Momen O, Mehrabi-Mazidi M, Jahangiri N (2015) Isotactic polypropylene (PP) modified by ABS and CaCO3 nanoparticles: effect of composition and compatibilization on the phase morphology, mechanical properties and fracture behavior. Polym Bull 72:2757–2782

    Article  CAS  Google Scholar 

  45. Fan T, Zhao Q, Guo W (2021) Effects of inorganic particles on the crystallization, mechanical properties and cellular structure of foamed PP composites in the IMD/MIM process. RSC Adv 11:36651–36662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang JZ, Wu CB (2012) Fractal characterization of impact fracture surface of polypropylene nanocomposites. Adv Polym Technol 31:71–81

    Article  CAS  Google Scholar 

  47. Weon JI, Gam KT, Boo WJ (2006) Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite. J Appl Polym Sci 99:3070–3076

    Article  CAS  Google Scholar 

  48. Liang JZ, Tang CY, Li RKY (1998) Mechanical properties of polypropylene/CaCO3 composites. Met Mater 4:616–619

    Article  CAS  Google Scholar 

  49. Yao ZT, Chen T, Li HY (2013) Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. J Hazard Mater 262:212–217

    Article  CAS  PubMed  Google Scholar 

  50. Bartczak Z, Argon AS, Cohen RE (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40:2347–2365

    Article  CAS  Google Scholar 

  51. Kiss A, Fekete E, Pukanszky B (2007) Aggregation of CaCO3 particles in PP composites: effect of surface coating. Compos Sci Technol 67:1574–1583

    Article  CAS  Google Scholar 

  52. Zebarjad SM, Tahani M, Sajjadi SA (2004) Influence of filler particles on deformation and fracture mechanism of isotactic polypropylene. J Mater Process Technol 155–156:1459–1464

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Changsha (No. kq2202184) and Hunan Provincial Science & Technology Department (No. 2021GK5007).

Funding

Natural Science Foundation of Changsha, kq2202184, Yue-Fei Zhang, Hunan Provincial Science and Technology Department, 2021GK5007, Yue-Fei Zhang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 429 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Li, Z., Wu, X. et al. The synergistic effect of an organic phosphate salt nucleating agent and CaCO3 in isotactic polypropylene. Polym. Bull. 81, 7157–7169 (2024). https://doi.org/10.1007/s00289-023-05051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05051-6

Keywords

Navigation