Skip to main content
Log in

Effect of polyacrylic salt nucleating agents on the properties of isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of polyacrylic salts are used as nucleating agents in isotactic polypropylene (iPP). Investigations are done on the mechanical characteristics, crystallization behavior, and melting behavior of nucleated iPP. According to the result from differential scanning calorimetry (DSC), the temperature at which nucleated iPP crystallize was 3–5 °C higher than the temperature at which pure iPP. Meanwhile, zinc polyacrylate, potassium polyacrylate, and sodium polyacrylate have the ability to induce β-crystals in iPP, according to wide-angle X-ray diffraction data. The optical microscope observation combined with DSC results shows that potassium polyacrylate had a β-nucleation effect when it had a lamellar crystal structure. When compared to pure iPP, the impact strength of iPP nucleated with sodium polyacrylate or potassium polyacrylate is improved by 23.48% and 24.35%, respectively. According to the mechanical properties results, there is no significant change in the tensile strength and flexural modulus of nucleated iPP with sodium polyacrylate and potassium polyacrylate. Without compromising its stiffness, sodium polyacrylate or potassium polyacrylate can increase the toughness of nucleated iPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang XX, Tang F, Lv W, Wu H, He XL, Zhao SC. Effect of an active β-nucleating agent on the crystallization behavior of polypropylene random copolymer. J Polym Res. 2022;29:4–16.

    Article  Google Scholar 

  2. Wang Q, Xie SQ, Hua Z, Niu H. Influence of isotactic polypropylene grafted with styryl-group on the polymer crystallization behavior. Polym Test. 2022;108:107508.

    Article  CAS  Google Scholar 

  3. Chen PJ, Xu M, Li XY, Han Y, Ding JJ, Lin YX, Liu G, Zhang X, Chen L, Tian XY. The influence of melt status and β-nucleation agent distribution on the crystallization of isotactic polypropylene. CrystEngComm. 2022;24:2429–45.

    Article  CAS  Google Scholar 

  4. Liu JR, Jiang DX, Li ZH. Annealing-induced high impact toughness of immiscible isotactic polypropylene/poly(acrylonitrile-butadiene-styrene) blend. Polym Adv Technol. 2022;33:1933–43.

    Article  Google Scholar 

  5. Carmeli E, Ottonello S, Wang B, Menyhard A, Muller AJ, Cavallo D. Competing crystallization of α- and β-phase induced by β-nucleating agents in microdroplets of isotactic polypropylene. CrystEngComm. 2022;24:1966–78.

    Article  CAS  Google Scholar 

  6. Li H, Zhang YF, Li Y, Zhong JR. Effect of a novel bio-based β-nucleating agent on the properties of isotactic polypropylene. J Polym Res. 2021;28:473–84.

    Article  CAS  Google Scholar 

  7. Xiang J, Li Y, Zhong JR, Lu CH, Zhang YF. Influence of chemical structures of bisamide nucleating agents on the crystallization behavior and properties of isotactic polypropylene. J Therm Anal Calorim. 2023;148: 2417–2428.

    Article  Google Scholar 

  8. Liu LY, Zhao Y, Zhang CB, Dong ZY, Wang KZ, Wang DJ. Morphological characteristics of β-nucleating agents governing the formation of the crystalline structure of isotactic polypropylene. Macromolecules. 2021;54:6824–34.

    Article  CAS  Google Scholar 

  9. Yang F, Yang F, Xiang M, Wu T. Preparation of highly oriented β polypropylene and its pore formation mechanism during stretching. Polym Crystal. 2021;4:1083–92.

    Google Scholar 

  10. Horvath F, Bihari L, Bodrogi D, Gombar T, Hilt B, Keszei B, Krain T, Simon A, Menyhard A. Effect of N,N’-dicyclohexyldicarboxamide homologues on the crystallization and properties of isotactic polypropylene. ACS Omega. 2021;6:9053–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia MQ, Zhang YF. The relation between chemical structure of branched amide nucleating agents and nucleation effect in isotactic polypropylene. J Therm Anal Calorim. 2021;145:3053–66.

    Article  CAS  Google Scholar 

  12. Wilsens C, Hawke LGD, Troisi EM, Hermida-Merino D, De Kort G, Leone N, Saralidze K, Peters GWM, Rastogi S. Effect of self-assembly of oxalamide based organic compounds on melt behavior, nucleation, and crystallization of isotactic polypropylene. Macromolecules. 2018;51:4882–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang K, Peng XS, Xin Z, Zhao SC. Calcium salt of l-isoleucine-phthalate: an α-nucleating agent that enhances the crystallization behavior and mechanical properties of isotactic polypropylene. J Macromol Sci Part B Phys. 2021;60:531–43.

    Article  Google Scholar 

  14. Zhang XX, Jiang XF, Qin W, Zhang K, Xin Z, Zhao SC. Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene. J Polym Res. 2021;28:124–35.

    Article  CAS  Google Scholar 

  15. Qin W, Zhang XX, Shao LS, Xin Z, Ling H, Zhao SC. Failure mechanism of zinc adipate as a β-nucleating agent for polypropylene in the presence of calcium stearate. Polymer. 2021;215:123374.

    Article  CAS  Google Scholar 

  16. Yang R, Ding L, Chen W, Chen L, Zhang X, Li J. Chain folding in main-chain liquid crystalline polyester with strong π–π interaction: An efficient β-nucleating agent for isotactic polypropylene. Macromolecules. 2017;50:1610–7.

    Article  CAS  Google Scholar 

  17. Li CQ, Liang C, Chen ZM, Di YH, Zheng SL, Wei S, Sun ZM. Surface modification of calcium carbonate: a review of theories, methods and applications. J Central South Univ. 2021;28:2589–611.

    Article  CAS  Google Scholar 

  18. Wang ZQ, Zhang YF, Li Y, Zhong JR. Effect of sodium lignosulfonate/nano calcium carbonate composite filler on properties of isotactic polypropylene. Polym Bull. 2023;80:3103–3117

    Article  CAS  Google Scholar 

  19. Barczewski M, Mysiukiewicz O, Andrzejewski J, Piasecki A, Strzemiecka B, Adamek G. The inhibiting effect of basalt powder on crystallization behavior and the structure-property relationship of alpha-nucleated polypropylene composites. Polym Testing. 2021;103:107372.

    Article  CAS  Google Scholar 

  20. Schawe JEK, Budde F, Alig I. Non-isothermal crystallization of polypropylene with sorbitol-type nucleating agents at cooling rates used in processing. Polym Int. 2019;68:240–7.

    Article  CAS  Google Scholar 

  21. Zhang K, Wang CS, Zhou Q, Ye HM. Dual actions of a commercial sorbitol derivative on crystallization behavior of poly(1,4-butylene adipate). ACS Omega. 2019;4:7005–13.

    Article  CAS  Google Scholar 

  22. Nguon OJ, Charlton Z, Kumar M, Lefas J, Vancso GJ. Interactions between sorbitol-type nucleator and additives for polypropylene. Polym Eng Sci. 2020;60:3046–55.

    Article  CAS  Google Scholar 

  23. Zhang X, Yang B, Fan BM, Sun H, Zhang HJ. Enhanced nonisothermal crystallization and heat resistance of poly(-lactic acid) by d-sorbitol as a homogeneous nucleating agent. ACS Macro Lett. 2021;10:154–60.

    Article  CAS  PubMed  Google Scholar 

  24. Barczewski M, Dudziec B, Dobrzynska-Mizera M, Sterzynski T. Synthesis and influence of sodium benzoate silsesquioxane based nucleating agent on thermal and mechanical properties of isotactic polypropylene. J Macromol Sci Part A Pure Appl Chem. 2014;51:907–13.

    Article  CAS  Google Scholar 

  25. Zhang YF, He B, Hou HH, Guo LH. Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J Macromol Sci Part B Phys. 2017;56:811–20.

    Article  CAS  Google Scholar 

  26. Dong M, Xu YH, Zhang SJ, Xu K, Zhang LY, Lv Y, Bai Q, Chen RS. An effective α/β nucleating agent compound for the preparation of polypropylene. Int Polym Proc. 2018;33:164–70.

    Article  CAS  Google Scholar 

  27. Peng W, Liu W, Zhang W, Li K, Liu X, Chen Z, Tang Z, Liu Z. A novel approach of preparing zinc adipate as β-nucleating agent for polypropylene engineering. J Mater Res. 2019;34:3654–65.

    Article  CAS  Google Scholar 

  28. Rashidi H, Oshani BN, Hejazi I, Seyfi J. Tuning crystallization and hydrolytic degradation behaviors of poly(lactic acid) by using silver phosphate, zinc oxide and their nano-hybrids. Polym Plast Technol Mater. 2020;59:72–82.

    CAS  Google Scholar 

  29. Wang B, Utzeri R, Castellano M, Stagnaro P, Muller AJ, Cavallo D. Heterogeneous nucleation and self-nucleation of isotactic polypropylene microdroplets in immiscible blends: from nucleation to growth-dominated crystallization. Macromolecules. 2020;53:5980–91.

    Article  CAS  Google Scholar 

  30. Li J, Liang ZH, Gao CT, Luo SS, Huang SW, Zhang DH, Qin SH. The application of organic phosphate nucleating agents in polypropylene with different molecular weights. Crystals. 2021;11:1543–54.

    Article  CAS  Google Scholar 

  31. Zhou H, Zhang YF. Effect of aromatic dihydrazide compounds on crystallization behavior and mechanical properties of isotactic polypropylene. J Therm Anal Calorim. 2022;147:6239–47.

    Article  CAS  Google Scholar 

  32. Su Z, Dong M, Guo Z, Yu J. Study of polystyrene and acrylonitrile—styrene copolymer as special β-nucleating agents to induce the crystallization of isotactic polypropylene. Macromolecules. 2007;40:4217–24.

    Article  CAS  Google Scholar 

  33. Liu J, Zhu X. Isotactic polypropylene toughened with poly (acrylonitrile–butadiene–styrene): compatibilizing role of maleic anhydride grafted polypropylene. Polym Eng Sci. 2019;59:E317–26.

    CAS  Google Scholar 

  34. Liu J, Zhu X. Isotactic polypropylene toughened with poly (acrylonitrile-butadiene-styrene): compatibilizing role of nano-ZnO. Polym Plast Technol Mater. 2019;58:2007–18.

    CAS  Google Scholar 

  35. Yang R, Cao H, Chen W, Ding L, Chen L, Zhang X, Li J. An efficient liquid crystalline ionomer β-nucleating agent featuring π-π stacking and ionic interactions for isotactic polypropylene. Polymer Crystal. 2020;3:10125.

    Article  Google Scholar 

  36. Li J, Cheung W, Jia D. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40:1219–22.

    Article  CAS  Google Scholar 

  37. Kadowaki Y, Kojio K. Crystallization behavior of biodegradable poly(L-lactic acid) (PLLA)/poly(butylene succinate) (PBS) blends based on in situ simultaneous wide-angle x-ray diffraction/small-angle x-ray scattering techniques and thermal analyses. J Polym Res. 2022;29:137–45.

    Article  CAS  Google Scholar 

  38. Jones AT, Aizlewood JM, Beckett D. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 1964;75:134–58.

    Article  Google Scholar 

  39. Zhou PZ, Zhang YF, Lin XF. Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2019;136:749–57.

    Article  CAS  Google Scholar 

  40. Wei Z, Zhang W, Chen G, Liang J, Yang S, Wang P, Liu L. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.

    Article  CAS  Google Scholar 

  41. He Z, Zhang YF, Li Y. Dependence of β-crystal formation of isotactic polypropylene on crystallization conditions. J Polym Res. 2020;27:250–9.

    Article  CAS  Google Scholar 

  42. Petchwattana N, Naknaen P, Sanetuntikul J. Transformation of β to α phase of isotactic polypropylene nucleated with nano styrene butadiene rubber-based β-nucleating agent under microwave irradiation. J Central South Univ. 2019;25:3098–106.

    Article  Google Scholar 

  43. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J-C, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules. 1998;31:807–14.

    Article  CAS  Google Scholar 

  44. Genovese A, Shanks R. Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal Calorim. 2004;75:233–48.

    Article  CAS  Google Scholar 

  45. Sun X, Li H, Wang J, Yan S. Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites. Macromolecules. 2006;39:8720–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China National Key R&D Program (No. 2022YFB2602605), Natural Science Foundation of Changsha (No. kq2202184), Hunan Provincial Science and Technology Department (No. 2021GK5007), and Hunan Provincial Key Laboratory of Cytochemistry (No. 2022XBHX08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Rong Zhong or Yue-Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, S., Zhong, JR., Li, Y. et al. Effect of polyacrylic salt nucleating agents on the properties of isotactic polypropylene. J Therm Anal Calorim 148, 6097–6106 (2023). https://doi.org/10.1007/s10973-023-12154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12154-9

Keywords

Navigation