Skip to main content
Log in

Influence of chemical structures of bisamide nucleating agents on the crystallization behavior and properties of isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the applicability of a series of bisamide compounds (DCDC-R-n/R) with different structures as nucleating agents for isotactic polypropylene (iPP) was investigated. The effect of these nucleating agents on crystallization and melting behavior of iPP was analyzed using differential scanning calorimetry (DSC), results revealing a clear impact on the nucleus density in iPP. It is shown that the nucleation effect is better when the carbon number of the methylene chain in the intermediate structure is even rather than odd. In addition, the effect is stronger when the side substitution is a cyclic group rather than a branched group, while bisamide nucleating agents containing a cyclic intermediate group tends to form more β-crystals in iPP. The crystallization peak temperature (\({T}_{\mathrm{c}})\) of iPP can be increased by more than 10 °C when the addition amount of DCDA-Cy-4, DCDA-Cy-6 and DCDA-Cp-6 is 0.3 mass%. The analysis of the iPP mechanical properties shows that DCDA-Cy-4 and DCDA-Cy-6 greatly improve its stiffness, while DCDA-Cy-Cy and DCDA-Cy-pPh have an excellent toughening effect on iPP as a result of β-phase. The structure-nucleation effect relationship of bisamide compounds was confirmed by further tests using wide-angle X-ray diffractometer (WAXD) and Materials Studio, showing good agreement with DSC data. Furthermore, the nucleation mechanism of these nucleating agents in iPP was investigated by using the lattice matching theory. The unit cell parameters of nucleating agents and iPP match well, indicating that these nucleating agents can induce epitaxial growth of iPP on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.

    Article  CAS  Google Scholar 

  2. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B. 2007;41:1121–71.

    Article  Google Scholar 

  3. Menyhárd A, Bredács M, Simon G, Horváth Z. Determination of nucleus density in semicrystalline polymers from nonisothermal crystallization curves. Macromolecules. 2015;48:2561–9.

    Article  Google Scholar 

  4. Kawaia T, Iijimaa R, Yamamotob Y, Kimura T. Crystal orientation of b-phase isotactic polypropylene induced by magnetic orientation of N, N’-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer. 2002;43:7301–6.

    Article  Google Scholar 

  5. An YJ, Zhang ZJ, Bi WG, Wang YH, Tang T. Characterization of high melt strength polypropylene synthesized via silane grafting initiated byin situheat induction reaction. J Appl Polym Sci. 2008;110:3727–32.

    Article  CAS  Google Scholar 

  6. Xie L, Zhong JR, Li Y, Zhang YF. In-situ synthesis of calcium pimelate as a highly dispersed β-nucleating agent for improving the crystallization behavior and mechanical properties of isotactic polypropylene. Polym Advan Technol. 2023;34:377–385.

    Article  Google Scholar 

  7. Liu ZZ, Zheng GQ, Shi HH, Liu CT, Mi LW, Li Q, Liu XH. Simultaneous enhancement of toughness and strength of stretched ipp film via tiny amount of β-nucleating agent under “shear-free” mel-extrusion. Chin J Polym Sci. 2021;39:1481–8.

    Article  CAS  Google Scholar 

  8. Zhao SC, Qin W, Xin Z, Zhou S, Gong HZ, Ni YM, Zhang K. In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer. 2018;151:84–91.

    Article  CAS  Google Scholar 

  9. Kotek J, Kelnar I, Baldrian J, Raab M. Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers. Eur Polym J. 2004;40:679–84.

    Article  CAS  Google Scholar 

  10. Bai HW, Wang Y, Zhang Q, Liu L, Zhou ZW. A comparative study of polypropylene nucleated by individual and compounding nucleating agents I melting and isothermal crystallization. J Appl Polym Sci. 2009;111:1624–37.

    Article  CAS  Google Scholar 

  11. Deshmukh YS, Wilsens CHRM, Leoné N, Portale G, Harings JAW, Rastogi S. Melt-miscible oxalamide based nucleating agents and their nucleation efficiency in isotactic polypropylene. Ind EngChemRes. 2016;55:11756–66.

    CAS  Google Scholar 

  12. Yue Y, Wang XX, Feng JC. Concentration effect of a bis-amide nucleating agent on the shear-induced crystallization behavior of isotactic polypropylene. ACS Appl Energy Mater. 2021;3:1145–56.

    CAS  Google Scholar 

  13. Yang R, Ding L, Chen WL, Chen L, Zhang X, Li JC. Chain folding in main-chain liquid crystalline polyester with strong π-π interaction: an efficient β-nucleating agent for isotactic polypropylene. Macromolecules. 2017;50:1610–7.

    Article  CAS  Google Scholar 

  14. Wang B, Utzeri R, Castellano M, Stagnaro P, Müller AJ, Cavallo D. Heterogeneous nucleation and self-nucleation of isotactic polypropylene microdroplets in immiscible blends: from nucleation to growth-dominated crystallization. Macromolecules. 2020;53:5980–91.

    Article  CAS  Google Scholar 

  15. Zhou H, Zhang YF. Effect of aromatic dihydrazide compounds on crystallization behavior and mechanical properties of isotactic polypropylene. J Therm Anal Calorim. 2021;147:6239–47.

    Article  Google Scholar 

  16. Horváth F, Bihari L, Menyhárd A. Effect of N, N’-dicyclohexyl terephthalic dihydrazide on the crystallization and properties of isotactic polypropylene. Period Polytech Chem Eng. 2022;66(2):182–91.

    Article  Google Scholar 

  17. Chang BB, Schneider K, Vogel R, Heinrich G. Influence of nucleating agent self-assembly on structural evolution of isotactic polypropylene during uniaxial stretching. Polymer. 2018;138:329–42.

    Article  CAS  Google Scholar 

  18. Niu H, Wang N, Li Y. Influence of β-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene. Polymer. 2018;150:371–9.

    Article  CAS  Google Scholar 

  19. Wang Y, Zhao J, Qu MJ, Guo J, Yang SG, Lei J, Xu JZ, Chen YH, Li ZM, Hsiao BS. An unusual promotion of γ-crystals in metallocene-made isotactic polypropylene from orientational relaxation and favorable temperature window induced by shear. Polymer. 2018;134:196–203.

    Article  CAS  Google Scholar 

  20. Wilsens CHRM, Hawke LGD, Kort GWd, Saidi S, Roy M, Leone N, Hermida-Merino D, Peters GWM, Rastogi S. Effect of thermal history and shear on the viscoelastic response of iPP containing an oxalamide-based organic compound. Macromolecules. 2019;52:2789–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding C, Wu GG, Zhang Y, Yang Y, Yin B, Yang MB. Effect of surfactant assisted β-nucleating agent self-assembly on the crystallization of polypropylene. Polymer. 2019;184:121895.

    Article  CAS  Google Scholar 

  22. Wang BH, Wang G, He SS, Sun TC, Chen JB, Shen CY, Zhang B. Self-nucleation of β-form isotactic polypropylene lamellar crystals in thin films. Macromolecules. 2021;54:11404–11.

    Article  CAS  Google Scholar 

  23. Rhoades AM, Gohn AM, Seo J, Androsch R, Colby RH. Sensitivity of polymer crystallization to shear at low and high supercooling of the melt. Macromolecules. 2018;51:2785–95.

    Article  CAS  Google Scholar 

  24. Sowinski P, Piorkowska E, Boyer SAE, Haudin JM. On the structure and nucleation mechanism in nucleated isotactic polypropylene crystallized under high pressure. Polymer. 2018;151:179–86.

    Article  CAS  Google Scholar 

  25. Mohmeyer N, Schmidt HW, Kristiansen PM, Altstädt V. Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules. 2006;39:5760–7.

    Article  CAS  Google Scholar 

  26. Horvath F, Bihari L, Bodrogi D, Gombar T, Hilt B, Keszei B, Krain T, Simon A, Menyhard A. Effect of N, N’-dicyclohexyldicarboxamide homologues on the crystallization and properties of isotactic polypropylene. ACS Omega. 2021;6:9053–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia MQ, Zhang YF. The relation between chemical structure of branched amide nucleating agents and nucleation effect in isotactic polypropylene. J Therm Anal Calorim. 2021;145:3053–66.

    Article  CAS  Google Scholar 

  28. Zhang X, Zhao SC, Kuo SW, Chen WC, Mohamed MG, Xin Z. An effective nucleating agent for isotactic polypropylene (iPP): zinc bis- (nadic anhydride) double-decker silsesquioxanes. Polymer. 2021;220:123574.

    Article  CAS  Google Scholar 

  29. Zhang YF, Mao JJ, Zhou PZ. The relation between chemical structure of dicarboxylic dihydrazide compounds and nucleation effect in isotactic polypropylene. J Therm Anal Calorim. 2021;145:2379–87.

    Article  CAS  Google Scholar 

  30. Horváth F, Bodrogi D, Hilt B, Pregi E, Menyhárd A. Organogelators with dual β- and α-nucleating ability in isotactic polypropylene. J Therm Anal Calorim. 2022;147:9451–68.

    Article  Google Scholar 

  31. Phulkerd P, Yamazaki A, Iwasaki S, Yamaguchi M. Effect of molecular weight on molecular orientation and morphology of polypropylene sheets containing a β-nucleating agent. Polym Eng Sci. 2020;61:367–78.

    Article  Google Scholar 

  32. Ma YJ, Xin ML, Xu K, Chen MC. A novel β-nucleating agent for isotactic polypropylene. Polym Int. 2013;62:744–50.

    Article  CAS  Google Scholar 

  33. Kotek J, Raab M, Baldrian J, Grellmann W. The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci. 2002;85:1174–84.

    Article  CAS  Google Scholar 

  34. Raab M, Ščudla J, Kolařı́K J. The effect of specific nucleation on tensile mechanical behaviour of isotactic polypropylene. Eur Polym J. 2004;40:1317–23.

    Article  CAS  Google Scholar 

  35. Song B, Wang Y, Bai HW, Liu L, Li YL, Zhang JH, Zhou ZW. Crystallization and melting behaviors of maleic anhydride grafted poly(propylene) nucleated by an aryl amide derivative. J Therm Anal Calorim. 2009;99:563–70.

    Article  Google Scholar 

  36. Kang J, Wang B, Peng H, Li J, Chen J, Gai J, Cao Y, Li HL, Yang F, Xiang M. Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution-the role of dual-selective β-nucleation agent. Polym Adv Technol. 2014;25:97–107.

    Article  CAS  Google Scholar 

  37. Shentu BQ, Li JP, Weng ZX. Additive effects of N, N, N′, N′-tetraalkyl terephthalamide on crystalline morphology and mechanical properties of polypropylene. J ZheJiang Univ-Sci A. 2006;7:330–4.

    Article  Google Scholar 

  38. Zhang ZS, Chen CY, Wang CG, Guo JQ, Mai KC. Nonisothermal crystallization kinetics of isotactic polypropylene nucleated with a novel supported β-nucleating agent. J Therm Anal Calorim. 2010;103:311–8.

    Article  Google Scholar 

  39. Varga J, Stoll K, Menyhárd A, Horváth Z. Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121:1469–80.

    Article  CAS  Google Scholar 

  40. Zhang YF, Chen H. Effects of nucleating agent 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide) on properties and crystallization behaviors of isotactic polypropylene. Colloid Polym Sci. 2013;292:493–8.

    Article  Google Scholar 

  41. Zhang YF, Chen H, Liu BB, Gu YH, Li XX. Isothermal and non-isothermal crystallization of isotactic polypropylene nucleated with 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide). Thermochim Acta. 2014;590:226–31.

    Article  CAS  Google Scholar 

  42. Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295:619–26.

    Article  CAS  Google Scholar 

  43. Zhang YF, Zhou PZ, Jiang YZ, Yang X. The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta. 2017;655:219–25.

    Article  CAS  Google Scholar 

  44. Yue Y, Feng JC. Structure evolution upon heating and cooling and its effects on nucleation performance: a review on aromatic amide β-nucleating agents for isotactic polypropylene. Polym Cryst. 2019;2:e10049.

    Google Scholar 

  45. Menyhárd A, Molnár J, Horváth Z, Horváth F, Cavallo D, Polyák P. Self-organization of micro reinforcements and the rules of crystal formation in polypropylene nucleated by non-selective nucleating agents with dual nucleating ability. Polym Cryst. 2020;3:e10136.

    Google Scholar 

  46. Yue Y, Yi JJ, Wang L, Feng JC. Toward a more comprehensive understanding on the structure evolution and assembly formation of a bisamide nucleating agent in polypropylene melt. Macromolecules. 2020;53:4381–94.

    Article  CAS  Google Scholar 

  47. Liu LY, Zhao Y, Zhang CB, Dong ZY, Wang KZ, Wang DJ. Morphological characteristics of β-nucleating agents governing the formation of the crystalline structure of isotactic polypropylene. Macromolecules. 2021;54:6824–34.

    Article  CAS  Google Scholar 

  48. Ding C, Yang Y, Liu L, Wu GG, Yin B, Yang MB. Surfactant-assisted β-NA supramolecular self-assembly in mini injection molding PP composite. Polymer. 2020;204:122816.

    Article  CAS  Google Scholar 

  49. Schmidt HW, Smith P, Blomenhofer M. Polypropylene resin compositions.: U.S. Pat., US7235191.

  50. Jones AT, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. MacromolChem Phys. 1964;75:134–58.

    Google Scholar 

  51. Qin W, Zhang XX, Shao LS, Xin Z, Ling H, Zhao SC. Failure mechanism of zinc adipate as a β-nucleating agent for polypropylene in the presence of calcium stearate. Polymer. 2021;215:123374.

    Article  CAS  Google Scholar 

  52. Bhatia A, Jayaratne VN, Simon GP, Edward GH, Turney TW. Nucleation of isotactic polypropylene with metal monoglycerolates. Polymer. 2015;59:110–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Changsha (No. kq2202184), Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20210815), Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (No. 2021CL03) and Hunan Provincial Science & Technology Department (No. 2021GK5007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Li, Y., Zhong, JR. et al. Influence of chemical structures of bisamide nucleating agents on the crystallization behavior and properties of isotactic polypropylene. J Therm Anal Calorim 148, 2417–2428 (2023). https://doi.org/10.1007/s10973-022-11874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11874-8

Keywords

Navigation