Skip to main content
Log in

Development and characterization of biopolymer electrolyte based on gellan gum (GG) with lithium chloride (LiCl) for the application of electrochemical devices

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The biopolymer electrolyte based on gellan gum with various concentrations of lithium chloride salt has been prepared using solution casting technique and optimized with high ionic conductivity of 4.08 × 10–3 S cm−1 for the composition of 1 g gellan gum + 1.2 M wt% of LiCl using AC impedance analysis. XRD has been used to study the crystalline/amorphous nature of the prepared membrane. The complex formation between the polymer and the salt is analyzed using FTIR technique. DSC analysis has been done to evaluate the glass transition temperature of the prepared electrolytes. Transference number measurement was done to confirm that the conduction is due to cations. CV analysis was done to measure the cyclic stability of the prepared membrane which shows an adequate result by reciprocating the pattern for 50 cycles. Primary lithium-ion conducting battery is constructed using highest lithium-ion conducting membrane. It shows an open circuit voltage of 1.88 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp 171–179

  2. Kumar LS, Selvin PC, Selvasekarapandian S, Manjuladevi R, Monisha S, Perumal P (2018) Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery. Ionics 24(12):3793–3803

    Article  CAS  Google Scholar 

  3. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Article  Google Scholar 

  4. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25(5):2147–2157

    Article  CAS  Google Scholar 

  5. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134(15):44702 (1–10)

    Article  Google Scholar 

  6. Kaplan DL (1998) Introduction to biopolymers from renewable resources. In: Biopolymers from renewable resources. Springer, Berlin, Heidelberg, pp 1–29

  7. Selvin PC, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Chandra ML (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24(11):3535–3542

    Article  Google Scholar 

  8. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22(10):3209–3223

    Article  CAS  Google Scholar 

  9. Khiar AA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16(2):123–129

    Article  CAS  Google Scholar 

  10. Monisha S, Selvasekarapandian S, Mathavan T, Benial AMF, Manoharan S, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci: Mater Electron 27(9):9314–9324

    CAS  Google Scholar 

  11. Rasali NMJ, Nagao Y, Samsudin AS (2019) Enhancement on amorphous phase in solid biopolymer electrolyte based alginate doped NH4NO3. Ionics 25(2):641–654

    Article  CAS  Google Scholar 

  12. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Manjuladevi R, Perumal P, Selvin PC (2019) Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics 25(1):203–214

    Article  CAS  Google Scholar 

  13. Singh R, Bhattacharya B, Rhee HW, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrogen Energy 40(30):9365–9372

    Article  CAS  Google Scholar 

  14. Noor IM (2020) Determination of charge carrier transport properties of gellan gum–lithium triflate solid polymer electrolyte from vibrational spectroscopy. High Perform Polym 32(2):168–174

    Article  CAS  Google Scholar 

  15. Noor ISM, Majid SR, Arof AK, Djurado D, Neto SC, Pawlicka A (2012) Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ionics 225:649–653

    Article  CAS  Google Scholar 

  16. Neto MJ, Sentanin F, Esperança JMSS, Medeiros MJ, Pawlicka A, de Zea Bermudez V, Silva MM (2015) Gellan gum—Ionic liquid membranes for electrochromic device application. Solid State Ionics 274:64–70

    Article  CAS  Google Scholar 

  17. Majid SR, Sabadini RC, Kanicki J, Pawlicka A (2014) Impedance analysis of gellan gum-poly (vinyl pyrrolidone) membranes. Mol Cryst Liq Cryst 604(1):84–95

    Article  CAS  Google Scholar 

  18. Kumar GG, Munichandraiah N (2000) Effect of plasticizers on magnesium-poly (ethyleneoxide) polymer electrolyte. J Electroanal Chem 495(1):42–50

    Article  CAS  Google Scholar 

  19. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2014) Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6(1):93–104

    Article  Google Scholar 

  20. Chandra MVL, Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S (2017) Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte. J Polym Eng 37(6):617–631

    Article  Google Scholar 

  21. Naachiyar RM, Ragam M, Selvasekarapandian S, Krishna MV, Buvaneshwari P (2021) Development of biopolymer electrolyte membrane using Gellan gum biopolymer incorporated with NH4SCN for electro-chemical application. Ionics 27(8):3415–3429

    Article  CAS  Google Scholar 

  22. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  23. Hong T, Yin JY, Nie SP, Xie MY (2021) Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chem: X 12:100168

    CAS  PubMed  Google Scholar 

  24. Setyaningrum DL, Riyanto S, Rohman A (2013) Analysis of corn and soybean oils in red fruit oil using FTIR spectroscopy in combination with partial least square. Int Food Res J 20(4):1977

    Google Scholar 

  25. Cassanelli M, Norton I, Mills T (2017) Effect of alcohols on gellan gum gel structure: bridging the molecular level and the three-dimensional network. Food Struct 14:112–120

    Article  Google Scholar 

  26. Halim NFA, Majid SR, Arof AK, Kajzar F, Pawlicka A (2012) Gellan gum-LiI gel polymer electrolytes. Mol Cryst Liq Cryst 554(1):232–238

    Article  CAS  Google Scholar 

  27. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23(10):2697–2706

    Article  CAS  Google Scholar 

  28. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinylpyrrolidone). Ionics 18(1–2):91–99

    Article  CAS  Google Scholar 

  29. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2019) Characterization of biodegradable solid polymer electrolyte system based on agar-NH4Br and its comparison with NH 4 I. J Solid State Electrochem 23(6):1727–1737

    Article  CAS  Google Scholar 

  30. Perumal P, Selvin PC, Selvasekarapandian S, Sivaraj P (2019) Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries. Mater Today: Proc 8:196–202

    CAS  Google Scholar 

  31. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Article  Google Scholar 

  32. Kumar LS, Selvin PC, Selvasekarapandian S (2021) Impact of lithium triflate (LiCF3SO3) salt on tamarind seed polysaccharide-based natural solid polymer electrolyte for application in electrochemical device. Polym Bull 78(4):1797–1819

    Article  Google Scholar 

  33. Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G (2017) Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics 23(10):2781–2790

    Article  CAS  Google Scholar 

  34. Nithya H, Selvasekarapandian S, Selvin PC, Kumar DA, Kawamura J (2012) Effect of propylene carbonate and dimethylformamide on ionic conductivity of P (ECH-EO) based polymer electrolyte. Electrochim Acta 66:110–120

    Article  CAS  Google Scholar 

  35. Prodromakis T, Papavassiliou C (2009) Engineering the Maxwell-Wagner polarization effect. Appl Surf Sci 255(15):6989–6994

    Article  CAS  Google Scholar 

  36. Mary IA, Selvanayagam S, Selvasekarapandian S, Chitra R, Chandra ML, Ponraj T (2020) Lithium ion conducting biopolymer membrane based on K-carrageenan with LiNO 3. Ionics 26(9):4311–4326

    Article  Google Scholar 

  37. Hemalatha R, Alagar M, Selvasekarapandian S, Sundaresan B, Moniha V, Boopathi G, Selvin PC (2019) Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics 25(1):141–154

    Article  CAS  Google Scholar 

  38. Chitra R, Sathya P, Selvasekarapandian S, Meyvel S (2020) Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym Bull 77(3):1555–1579

    Article  CAS  Google Scholar 

  39. Selvasekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) Characterization of PVA—NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Jpn 79:163–168

  40. Genova FKM, Selvasekarapandian S, Karthikeyan S, Vijaya N, Pradeepa R, Sivadevi S (2015) Study on blend polymer (PVA-PAN) doped with lithium bromide. Polym Sci, Ser A 57(6):851–862

    Article  CAS  Google Scholar 

  41. Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Selvalakshmi S, Pandi DV (2017) Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes. Ionics 23(10):2677–2684

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aafrin Hazaana, S., Joseph, A., Selvasekarapandian, S. et al. Development and characterization of biopolymer electrolyte based on gellan gum (GG) with lithium chloride (LiCl) for the application of electrochemical devices. Polym. Bull. 80, 5291–5311 (2023). https://doi.org/10.1007/s00289-022-04316-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04316-w

Keywords

Navigation