Skip to main content
Log in

Cyclic voltammetry and XPS studies of poly (aniline-co-3-aminophenol)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, we prepared enormously soluble poly (aniline-co-3-aminophenol) (PA-co-3-AP) copolymers via a simple chemical oxidative method with aniline and 3-aminophenol, and their properties are compared with conventional polyaniline (PA). Concerning the weight percentage (20, 40, 60 and 80%) of 3-aminophenol, the as-prepared polyamines are denoted as PA-co-3-AP20, PA-co-3-AP40, PA-co-3-AP 60 and PA-co-3-AP80, respectively. The structural determination of as-prepared polymers has been explored by X-ray photoelectron spectroscopy (XPS), UV–Vis spectroscopy. The signature property of the conducting polymers is their tunable electrochemical behavior and the copolymers are investigated for their electrochemical activity. In the electrochemical study, the copolymers differ from PA in the single-electron oxidation and reduction, reversibly at various scan rates ranging from 20 to 50 mV. The current density decreases from PA-co-3-AP20 to PA-co-3-AP80 by increasing the loading weight percentage of 3-aminophenol in the polymeric backbone. The present investigation provides further insight into methods to prepare extremely soluble conducting polyanilines for potential electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhati VS, Nigam ANA, Sharma CS, Kumar M (2019) PAN/(PAN-b-PMMA) derived nanoporous carbon nanofibers loaded on ZnO nanostructures for hydrogen detection. Sens Actuators B Chem 299:126980

    Google Scholar 

  2. Al-Hussaini AS, Eltabie KR, Hassan MER (2016) One-pot modern fabrication and characterization of TiO2@terpoly(aniline, anthranilic acid and o-phenylenediamine) core-shell nanocomposites via polycondensation. Polymer 101:328–337

    CAS  Google Scholar 

  3. Khaled MO, Mohamed ERH, Al-Hussaini AS (2019) Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes. J Polym Res 199

  4. Al-Hussaini AS, El-Bana WE, El-Ghamaz NA (2020) New semiconducting core-shell nanocomposites. Compos nterfaces 27:385–399

    CAS  Google Scholar 

  5. Al-Hussaini AS (2016) New polymeric based materials: terpoly(aniline, diphenyl amine, and o-anthranilic acid)/kaolinite composites. Polym Adv Technol 27:1604–1608

    CAS  Google Scholar 

  6. Al-Hussaini AS (2016) Inexpensive fabrication and characterization of crystalline poly(o-anthranilic acid-co-o-phenylenediamine) emeraldine base/bentonite nanocomposites. Polym Plast Technol Eng 55:1386–1392

    CAS  Google Scholar 

  7. Al-Hussaini AS, Mohamedein AM, Hassan MER (2021) Towards appraising influence of new economical polymeric core-shell nanocomposite. J Inorg Organomet Polym Mater 31:1491–1502

    CAS  Google Scholar 

  8. Al-Hussaini AS, Eltabie KR, Hassan MER (2018) Fabrication of core–shell nanocomposites with enhanced photocatalytic efficacy. Polym Int 67:1419–1428

    CAS  Google Scholar 

  9. Apparao T, Arukula R, Narayan R, Rao CRK, Raju KVSN (2015) Energy storage and surface protection properties of dianiline co-polymers. RSC Adv 5:106523–106535

    Google Scholar 

  10. Al-Hussaini AS, Eltabie KR, Hassan MER (2020) Synthesis of smart core-shell nanocomposites with enhanced photocatalytic efficacy. Polym Plast Technol Eng 59:1956–1966

    CAS  Google Scholar 

  11. Li T, Wang X, Liu P, Yang B, Diao S, Gao Y (2019) Synthesis of feather fan-like PANI electrodes for supercapacitors. Synth Metals 258:1161

    Google Scholar 

  12. Ravi A, Vinothkannan M, Kim AR, Yoo DJ (2019) Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: an efficient anode catalyst for direct methanol fuel cells. J Alloys Compd 771:477–488

    Google Scholar 

  13. Belanger D, Ren XM, Davey J, Uribe F, Gottesfeld S (2000) Characterization and long-term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc 147:2923

    CAS  Google Scholar 

  14. Li D, Huang JX, Kaner R (2009) B, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135

    CAS  PubMed  Google Scholar 

  15. Fusalba F, Gouerec P, Villers D, Belanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1

    CAS  Google Scholar 

  16. Skotheim TA (1986) Handbook of conducting polymers, vol I and II. Marcel Dekker, New York

  17. Trivedi DC, Nalwa HS (1997) Handbook of organic conductive molecules and polymers, vol 2. Chichester/Wiley, England

  18. Al-Hussaini AS (2021) Eco-friendly synthesis and antimicrobial performance of new heteropolymer composites. J Polym Environ 29:1717–1726

    CAS  Google Scholar 

  19. Manohar SK, MacDiarmid AG, Cromack KR, Gindey JM, Enstein AJ (1989) N-substituted derivatives of polyaniline. Synth Met 29:E349-356

    CAS  Google Scholar 

  20. Watanabe A, Mori K, Iwabuchi Y, Iwasaki Y, Nakamura Y, Ito O (1989) Electrochemical polymerization of aniline and N-alkylanilines. Macromolecules 22:3521–3525

    CAS  Google Scholar 

  21. Chevalier JW, Bergeron J-Y, Dao LH (1992) Synthesis, characterization, and properties of poly (N-alkylanilines). Macromolecules 25:3325

    CAS  Google Scholar 

  22. Ito A, Oto K-I, Tanaka K, Yamabe T, Yoshizawa K (1995) n-Alkyl group-substituted poly (m-aniline) s: syntheses and magnetic properties. Macromolecules 28:5618

    CAS  Google Scholar 

  23. Chan HSO, Ho PKH, Ng SC, Tan BTG, Tan KLJ (1995) A new water-soluble, self-doping conducting polyaniline from poly (o-aminobenzylphosphonic acid) and its sodium salts: synthesis and characterization. Am Chem Soc 117:8517

    CAS  Google Scholar 

  24. Waware US, Arukula R, Hamouda AMS et al (2020) Electrochemical and X-ray photoelectron spectroscopic investigations of conductive polymers. Ionics 26:831–838

    CAS  Google Scholar 

  25. Waware US, Rashid M, Hamouda AMS (2019) Poly (aniline-co-3-aminophenol): enhanced crystallinity and solubility. Appl Phys A 125:846

    CAS  Google Scholar 

  26. Parthiban A, Le Guen A, Yansheng Y, Hoffmann U, Klapper M, Müllen K (1997) Amino-functionalized poly (arylene ether ketone)s. Macromolecules 30:2238–2243

    CAS  Google Scholar 

  27. Wei Y, Harihara R, Patel SA (1990) Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules 23:758

    CAS  Google Scholar 

  28. Pandey SS, Annapoorni S, Malhotra BD (1993) Synthesis and characterization of poly (aniline-co-o-anisidine). A processable conducting copolymer. Macromolecules 26:3190

    CAS  Google Scholar 

  29. Nguyen MT, Diaz AF (1995) Water-soluble poly (aniline-co-o-anthranilic acid) copolymers. Macromolecules 28:3411

    CAS  Google Scholar 

  30. Yue J, Wang ZH, Cromack KR, Epstein AJ, MacDiarmid AG (1991) Effect of sulfonic acid group on polyaniline backbone. J Am Chem Sot 113:2665

    CAS  Google Scholar 

  31. Chen S-A, Hwang G-W (1995) Water-soluble self-acid-doped conducting polyaniline: structure and properties. J Am Chem Sot 117:10055

    CAS  Google Scholar 

  32. Cameron RE, Clement SK (1991) US Patent 5008041

  33. Macinnes D, Funt BL (1988) Poly-o-methoxyaniline: a new soluble conducting polymer. Synth Metals 25:235–242

    CAS  Google Scholar 

  34. Al-Hussaini AS, Elias AM, Abd El-Ghaffar MA (2017) New poly (aniline-co-o-phenylenediamine)/kaolinite microcomposites for water decontamination. J Polym Environ 25:35–45

    CAS  Google Scholar 

  35. Al-Hussaini AS (2018) Novel benzidine and o-phenylenediamine copolymer–matrix microcomposites. J Inorg Organomet Polym Mater 28:871–879

    CAS  Google Scholar 

  36. Shacklette LW, Wolf JF, Gould S, Baughman RH (1988) Structure and properties of polyaniline as modeled by single-crystal oligomers. J Chem Phys 88:3955

    CAS  Google Scholar 

  37. Cao Y, Li S, Xue Z, Guo D (1986) Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. Synth Met 16:305–315

    Google Scholar 

  38. Masanori K, Akira K, Kazuo S (1986) EPR studies of the charging process of polyaniline electrodes. Chem Lett 15:147–150

    Google Scholar 

  39. Yang Z, Wang X, Yang Y, Liao Y, Wei Y, Xie X (2010) Synthesis of electroactive Tetraaniline−PEO−Tetraaniline triblock copolymer and its self-assembled vesicle with acidity response. Langmuir 26:9386–9392

    CAS  PubMed  Google Scholar 

  40. Manohar SK, MacDiarmid AG (1991) Polyaniline: pernigranile, an isolable intermediate in teh conventional chemical synthesis of emeraldine. Synth Met 41:711–714

    CAS  Google Scholar 

  41. Jing X, Wang Y, Wu D, Qiang J (2007) Sonochemical synthesis of polyaniline nanofibers. Ultrason Sonochem 14:75–80

    CAS  PubMed  Google Scholar 

  42. Feng X, Shi Y, Jin S (2015) Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance. Appl Surf Sci 353:788–792

    CAS  Google Scholar 

  43. Tan L, Cao L, Yang M, Wang G, Sun D (2011) Formation of dual-responsive polystyrene/polyaniline microspheres with sea urchin-like and core-shell morphologies. Polymer 52:4770–4776

    CAS  Google Scholar 

  44. Al-Hussaini AS, Abdullah MM, Mohamed ERH (2021) Highest degradation of aromatic dyes by new MgO@ PANI-o-PDA core–shell nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-021-03682-1

    Article  Google Scholar 

  45. Albuquerque JE, Mattoso L, Faria R, Masters J, MacDiarmid A (2004) Highest degradation of aromatic dyes by new MgO@ PANI-o-PDA core–shell nanocomposites. Synth Met 146(1):1–10

    Google Scholar 

  46. Harle HD, Ingram JA, Leber PA, Hess KR, Yoder CH (2003) A simple method for determination of solubility in the first-year laboratory. J Chem Edu 80:560

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Qatar University, Doha, for providing the necessary research funding. We also acknowledge the instrumentation facilities provided at CLU and CAM of Qatar University, Doha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umesh Somaji Waware or Ravi Arukula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waware, U.S., Arukula, R., Hamouda, A.M.S. et al. Cyclic voltammetry and XPS studies of poly (aniline-co-3-aminophenol). Polym. Bull. 80, 3897–3910 (2023). https://doi.org/10.1007/s00289-022-04213-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04213-2

Keywords

Navigation