Skip to main content
Log in

A study of the effect of L-histidine on the polymerization of benzoxazines and properties of their thermosets

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The cleavage of the oxazine ring of benzoxazine resins generally requires high energy during the ring-opening polymerization, which leads them to be processed at a much higher temperature than the traditional thermoplastics. In this paper, a bio-based substance, L-histidine, has been used as the catalyst to lower the ring-opening polymerization of the well-commercialized benzoxazine resin (BA-a) based on aniline and bisphenol-A. The catalytic effect of L-histidine on the polymerization behaviors of benzoxazine resin (BA-a) has been monitored by differential scanning calorimetry and in situ Fourier transform infrared spectroscopy. In addition, L-histidine has also been found to be a good property modifier for BA-a-derived thermosets. The thermal properties of resulting polybenzoxazines have been investigated by thermogravimetric analysis and dynamic thermomechanical analysis. Notably, the thermoset derived from BA-a with adding only 5 mol% L-histidine exhibits excellent thermal stability in consideration of high Tg (206 °C), high Td10 temperature (319 °C) and high chair yield value (40%), making this thermosetting resin a promising material for high-performance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ning X, Ishida H (1994) Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A: Polym Chem 32:1121–1129

    Article  CAS  Google Scholar 

  2. Ishida H, Agag T (2011) Handbook of benzoxazine resins. Elsevier, Amsterdam

    Google Scholar 

  3. Ishida H, Froimowicz P (2017) Advanced and emerging polybenzoxazine science and technology. Elsevier, Amsterdam

    Google Scholar 

  4. Kiskan B (2018) Adapting benzoxazine chemistry for unconventional applications. React Funct Polym 129:76–88

    Article  CAS  Google Scholar 

  5. Ishida H, Allen DJ (1996) Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polym Sci Part A: Polym Phys 34:1019–1030

    Article  CAS  Google Scholar 

  6. Wang H, Zhu R, Yang P, Gu Y (2016) A study on the chain propagation of benzoxazine. Polym Chem 7:860–866

    Article  CAS  Google Scholar 

  7. Zhang K, Tan XX, Wang Y, Ishida H (2019) Unique self-catalyzed cationic ring-opening polymerization of a high performance deoxybenzoin-based 1,3-benzoxazine monomer. Polymer 168:8–15

    Article  CAS  Google Scholar 

  8. Zhang K, Han MC, Han L, Ishida H (2019) Resveratrol-based tri-functional benzoxazines: Synthesis, characterization, polymerization, and thermal and flame retardant properties. Eur Polym J 116:526–533

    Article  CAS  Google Scholar 

  9. El-Mahdy AFM, Kuo SW (2018) Direct synthesis of poly(benzoxazine imide) from an ortho-benzoxazine: its thermal conversion to highly cross-linked polybenzoxazole and blending with poly(4-vinylphenol). Polym Chem 9:1815–1826

    Article  CAS  Google Scholar 

  10. Wang Y, You S, Hu J, Zhang K (2020) Synthesis and properties of benzoxazine monomers bearing both 3-methyltetrahydrophtalimide and nitrile groups: para-para vs. ortho-ortho. Macromol Res 28:74–81

    Article  CAS  Google Scholar 

  11. Wu J, Xi Y, Mccandless GT, Xie Y, Menon R, Patel Y, Yang DJ, Iacono ST, Novak BM (2015) Synthesis and characterization of partially fluorinated polybenzoxazine resins utilizing octafluorocyclopentene as a versatile building block. Macromolecules 48:6087–6095

    Article  CAS  Google Scholar 

  12. Zhang K, Han L, Froimowicz P, Ishida H (2017) A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules 50:6552–6560

    Article  CAS  Google Scholar 

  13. Zhang K, Yu X, Kuo SW (2019) Outstanding dielectric and thermal properties of main chain-type poly(benzoxazine co-imide-co-siloxane)-based cross-linked networks. Polym Chem 10:2387–2396

    Article  CAS  Google Scholar 

  14. Zhang K, Yu X (2018) Catalyst-free and low-temperature terpolymerization in a single-component benzoxazine resin containing both norbornene and acetylene functionalities. Macromolecules 51:6524–6533

    Article  CAS  Google Scholar 

  15. Zhang K, Liu Y, Ishida H (2019) Polymerization of an AB-type benzoxazine monomer toward different polybenzoxazine networks: when diels–alder reaction meets benzoxazine chemistry in a single-component resin. Macromolecules 52:7386–7395

    Article  CAS  Google Scholar 

  16. Zhang K, Liu Y, Evans CJ, Yang S (2020) Easily processable thermosets with outstanding performance via smart twisted small‐molecule benzoxazines. Macromol Rapid Comm. https://doi.org/10.1002/marc.201900625

    Article  Google Scholar 

  17. Akkus B, Kiskan B, Yagci Y (2019) Counterion effect of amine salts on ring-opening polymerization of 1,3-benzoxazines. Macromol Chem Phys 220:1800268

    Article  Google Scholar 

  18. Arslan M, Kiskan B, Yagci Y (2018) Ring-opening polymerization of 1,3-benzoxazines via borane catalyst. Polymers 10:239

    Article  Google Scholar 

  19. Sun J, Wei W, Xu Y, Qu J, Liu X, Endo T (2015) A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties. RSC Adv 5:19048–19057

    Article  CAS  Google Scholar 

  20. Li S, Zou T (2012) Synthesis, characterization of new carboxylic acid-containing benzoxazine and its cocuring behaviors with bisoxazoline. J Appl Polym Sci 123:922–928

    Article  CAS  Google Scholar 

  21. Kaya G, Kiskan B, Yagci Y (2018) Phenolic naphthoxazines as curing promoters for benzoxazines. Macromolecules 51:1688–1695

    Article  CAS  Google Scholar 

  22. Liu C, Shen D, Sebastián RM, Marquet J, Schönfeld R (2013) Catalyst effects on the ring-opening polymerization of 1,3-benzoxazine and on the polymer structure. Polymer 54:2873–2878

    Article  CAS  Google Scholar 

  23. Chutayothin P, Ishida H (2010) Cationic ring-opening polymerization of 1,3-benzoxazines: mechanistic study using model compounds. Macromolecules 43:4562–4572

    Article  CAS  Google Scholar 

  24. Cid JA, Wang YX, Ishida H (1999) Development and characterization of high-performance polybenzoxazine composites. Polym Polym Compos 7:409–420

    CAS  Google Scholar 

  25. Wang YX, Ishida H (1999) Cationic ring-opening polymerization of benzoxazines. Polymer 40:4563–4570

    Article  CAS  Google Scholar 

  26. Kiran V, Gaur B (2016) Curing and thermal behavior of epoxy resins of hexafluoro-bisphenol–A and bisphenol-A. Polímeros 26:11–20

    Article  CAS  Google Scholar 

  27. Hajime K, Akihiro M, Kiichi H, Keiko O, Akinori F (1998) Epoxy resin cured by bisphenol a based benzoxazine. J Appl Polym Sci 68:1903–1910

    Article  Google Scholar 

  28. Awad SA, Fellows CM, Mahini SS (2018) A comparative study of accelerated weathering of epoxy resins based on DGEBA and HDGEBA. J Polym Res 25:103

    Article  Google Scholar 

  29. Kim SK, Choi SW, Jeon WS, Park JO, Ko T, Chang H, Lee JC (2012) Cross-linked benzoxazine–benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature. Macromolecules 45:1438–1446

    Article  CAS  Google Scholar 

  30. Dunkers J, Ishida H (1995) Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the fingerprint region. Spectrochim Acta Part A 51:1061–1074

    Article  Google Scholar 

  31. Han L, Iguchi D, Gil P, Heyl TR, Sedwick VM, Arza CR, Ohashi S, Lacks DJ, Ishida H (2017) Oxazine ring-related vibrational modes of benzoxazine monomers using fully aromatically substituted, deuterated,15 N isotope exchanged, and oxazine-ring-substituted compounds and theoretical calculations. J Phys Chem A 121:6269–6282

    Article  CAS  Google Scholar 

  32. Chernykh A, Liu JP, Ishida H (2006) Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polym 47:7664–7669

    Article  CAS  Google Scholar 

  33. Hamerton I, Thompson S, Howlin BJ (2013) New method to predict the thermal degradation behavior of polybenzoxazines from empirical data using structure property relationships. Macromolecules 46:7605–7615

    Article  CAS  Google Scholar 

  34. Sini NK, Azechi M, Endo T (2015) Synthesis and properties of spiro-centered benzoxazines. Macromolecules 48:7466–7472

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (51603093) and the Natural Science Foundation of Jiangsu Province (BK 20160515) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Hao, B. & Zhang, K. A study of the effect of L-histidine on the polymerization of benzoxazines and properties of their thermosets. Polym. Bull. 79, 1615–1626 (2022). https://doi.org/10.1007/s00289-020-03485-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03485-w

Keywords

Navigation