Skip to main content
Log in

Effects of gamma irradiation on 3D-printed polylactic acid (PLA) and high-density polyethylene (HDPE)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Effect of gamma radiation on the mechanical and structural properties of polylactic acid (PLA) and high-density polyethylene (HDPE) is analyzed. Samples were irradiated in ambient conditions with doses in the range of (0–175 kGy) using 60Co gamma irradiation facility. Experimental results showed a clear effect of gamma radiation on polymer properties through the action of crosslinking, chain scission and oxidative degradation. Tensile testing results for both polymers showed a decrease in the tensile strength and ductility at high irradiation doses, suggesting that the effect of both chain scission and oxidative degradation is dominant over crosslinking for higher doses. Results from Fourier transform infrared (FTIR) spectroscopy show that signature peaks of both PLA and HDPE were present after irradiation indicating that exposure to gamma radiation does not lead to diminishing their corresponding structural modes. Nevertheless, new peaks were observed upon irradiation of HDPE samples. These new peaks are attributed to modes of different oxygen bonds in oxidation products such as carbonyl groups and alcohol groups. Finally, X-ray diffraction (XRD) results show that both polymers exhibit increased crystallinity with increased radiation exposure due to chain splitting that is stimulated by oxidative reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176. https://doi.org/10.1134/S0965545X1202006X

    Article  CAS  Google Scholar 

  2. Hamad K, Kaseem M, Ko YG, Deri F (2014) Biodegradable polymer blends and composites: an overview. Polym Sci Ser A 56:812–829. https://doi.org/10.1134/S0965545X14060054

    Article  CAS  Google Scholar 

  3. Stoleru E, Zaharescu T, Hitruc EG et al (2016) Lactoferrin-immobilized surfaces onto functionalized PLA assisted by the gamma-rays and nitrogen plasma to create materials with multifunctional properties. ACS Appl Mater Interfaces 8:31902–31915. https://doi.org/10.1021/acsami.6b09069

    Article  CAS  PubMed  Google Scholar 

  4. Hamad K, Kaseem M, Yang HW et al (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9:435–455. https://doi.org/10.3144/expresspolymlett.2015.42

    Article  CAS  Google Scholar 

  5. Patel RM (2016) Polyethylene. In: Wagner JR (ed) Multilayer flexible packaging, second. Elsevier, pp 17–34

  6. Ayadi A, Kraiem D, Bradai C, Pimbert S (2012) Recycling effect on mechanical behavior of HDPE/glass fibers at low concentrations. J Thermoplast Compos Mater 25:523–536. https://doi.org/10.1177/0892705711411343

    Article  Google Scholar 

  7. Sp T (1895) Colour vision: being the Tyndall lectures delivered in 1894 at the Royal Institution. Nature 53:124–125. https://doi.org/10.1038/053124a0

    Article  Google Scholar 

  8. Rosato DV, Rosato DV, Rosato MV (2004) Plastic product material and process selection handbook. Elsevier

  9. Cawood M, Smith GAH (1980) A compression moulding technique for thick sheets of thermoplastics. Polym Test 1:3–7. https://doi.org/10.1016/0142-9418(80)90022-7

    Article  CAS  Google Scholar 

  10. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32:54–64. https://doi.org/10.1016/j.dental.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  11. Chiulan I, Frone A, Brandabur C, Panaitescu D (2017) Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5:2. https://doi.org/10.3390/bioengineering5010002

    Article  CAS  PubMed Central  Google Scholar 

  12. Reddy KR, Lee K-P, Gopalan AI (2007) Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci 106:1181–1191. https://doi.org/10.1002/app.26601

    Article  CAS  Google Scholar 

  13. Reddy KR, Lee K-P, Kim JY, Lee Y (2008) Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2—polyaniline core-shell composite nanoparticles: physical properties. J Nanosci Nanotechnol 8:5632–5639. https://doi.org/10.1166/jnn.2008.209

    Article  CAS  PubMed  Google Scholar 

  14. Dakshayini BS, Reddy KR, Mishra A et al (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 147:7–24. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  15. Reddy KR, Lee K-P, Iyengar AG (2007) Synthesis and characterization of novel conducting composites of Fe3O4 nanoparticles and sulfonated polyanilines. J Appl Polym Sci 104:4127–4134. https://doi.org/10.1002/app.26020

    Article  CAS  Google Scholar 

  16. Reddy KR, Lee K-P, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818. https://doi.org/10.1016/j.matlet.2007.10.025

    Article  CAS  Google Scholar 

  17. Reddy KR, Sin BC, Ryu KS et al (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603. https://doi.org/10.1016/j.synthmet.2008.11.030

    Article  CAS  Google Scholar 

  18. Reddy KR, Park W, Sin BC et al (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335:34–39. https://doi.org/10.1016/j.jcis.2009.02.068

    Article  CAS  PubMed  Google Scholar 

  19. Reddy KR, Lee K-P, Gopalan AI, Showkat AM (2007) Synthesis and properties of magnetite/poly (aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocomposites. Polym Adv Technol 18:38–43. https://doi.org/10.1002/pat.735

    Article  CAS  Google Scholar 

  20. Han SJ, Lee H-I, Jeong HM et al (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 53:1193–1204. https://doi.org/10.1080/00222348.2013.879804

    Article  CAS  Google Scholar 

  21. Son DR, Raghu AV, Reddy KR, Jeong HM (2016) Compatibility of thermally reduced graphene with polyesters. J Macromol Sci Part B 55:1099–1110. https://doi.org/10.1080/00222348.2016.1242529

    Article  CAS  Google Scholar 

  22. Hassan M, Reddy KR, Haque E et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8. https://doi.org/10.1016/j.compscitech.2014.04.007

    Article  CAS  Google Scholar 

  23. Boyer C, Liu J, Wong L et al (2008) Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J Polym Sci Part A Polym Chem 46:7207–7224. https://doi.org/10.1002/pola.23028

    Article  CAS  Google Scholar 

  24. Khan MU, Reddy KR, Snguanwongchai T et al (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599–1610. https://doi.org/10.1007/s00396-016-3922-7

    Article  CAS  Google Scholar 

  25. Choi SH, Kim DH, Raghu AV et al (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51:197–207. https://doi.org/10.1080/00222348.2011.583193

    Article  CAS  Google Scholar 

  26. Lee YR, Kim SC, Lee H et al (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19:66–71. https://doi.org/10.1007/s13233-011-0106-7

    Article  CAS  Google Scholar 

  27. Sadighzadeh A, Azimzadeh Asiabi P, Ramazani A et al (2015) Characterization of gamma irradiated low and high density polyethylene using the FTIR and DSC technique. J Inorg Organomet Polym Mater 25:1448–1455. https://doi.org/10.1007/s10904-015-0258-6

    Article  CAS  Google Scholar 

  28. Moez AA, Aly SS, Elshaer YH (2012) Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies. Spectrochim Acta Part A Mol Biomol Spectrosc 93:203–207. https://doi.org/10.1016/j.saa.2012.02.031

    Article  CAS  Google Scholar 

  29. Klepac D, Ščetar M, Baranović G et al (2014) Influence of high doses γ-irradiation on oxygen permeability of linear low-density polyethylene and cast polypropylene films. Radiat Phys Chem 97:304–312. https://doi.org/10.1016/j.radphyschem.2013.12.005

    Article  CAS  Google Scholar 

  30. Ninaya ZHA, Abdul Hamid ZA (2017) Surface modification of poly(lactic acid) microspheres via gamma irradiation. Solid State Phenom 264:128–131. https://doi.org/10.4028/www.scientific.net/SSP.264.128

    Article  Google Scholar 

  31. Quynh TM, Diep TB, Van Binh N et al (2012) Radiation induced crosslinking of poly (L-lactic acid) for making the polymeric materials having high thermal stability and improved mechanical properties

  32. Benyathiar P, Selke S, Auras R (2016) The effect of gamma and electron beam irradiation on the biodegradability of PLA films. J Polym Environ 24:230–240. https://doi.org/10.1007/s10924-016-0766-7

    Article  CAS  Google Scholar 

  33. West C, McTaggart R, Letcher T et al (2019) Effects of gamma irradiation upon the mechanical and chemical properties of 3D-printed samples of polylactic acid. J Manuf Sci Eng. https://doi.org/10.1115/1.4042581

    Article  Google Scholar 

  34. Abdel Tawab K, Ibrahim SM, Magida MM (2013) The effect of gamma irradiation on mechanical, and thermal properties of recycling polyethylene terephthalate and low density polyethylene (R-PET/LDPE) blend compatibilized by ethylene vinyl acetate (EVA). J Radioanal Nucl Chem 295:1313–1319. https://doi.org/10.1007/s10967-012-2163-6

    Article  CAS  Google Scholar 

  35. Catarí E, Albano C, Karam A et al (2005) Grafting of a LLDPE using gamma irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 236:338–342. https://doi.org/10.1016/j.nimb.2005.03.273

    Article  CAS  Google Scholar 

  36. Porto KMBG, Napolitano CM, Borrely SI (2018) Gamma radiation effects in packaging for sterilization of health products and their constituents paper and plastic film. Radiat Phys Chem 142:23–28. https://doi.org/10.1016/j.radphyschem.2016.12.019

    Article  CAS  Google Scholar 

  37. Shahabi S, Najafi F, Majdabadi A et al (2014) Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite. Sci World J 2014:1–9. https://doi.org/10.1155/2014/420616

    Article  Google Scholar 

  38. Canetta E, Hunt G, Matsuda M (2016) The convergence of food irradiation, nanomaterials and polymer packaging : innovation, possibilities and benefits. Nano Biomed 8:1–14. https://doi.org/10.11344/nano.8.1

    Article  Google Scholar 

  39. Cota SS, Vasconcelos V, Senne M Jr et al (2007) Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE). Brazilian J Chem Eng 24:259–265. https://doi.org/10.1590/S0104-66322007000200010

    Article  CAS  Google Scholar 

  40. Zaki MF, Elshaer YH, Taha DH (2017) The alterations in high density polyethylene properties with gamma irradiation. Radiat Phys Chem 139:90–96. https://doi.org/10.1016/j.radphyschem.2017.02.058

    Article  CAS  Google Scholar 

  41. Spadaro G, Alessi S, Dispenza C (2017) Ionizing radiation-induced crosslinking and degradation of polymers. In: Sun Y, Chmielewski AG (eds) Applications of ionizing radiation in materials processing. pp 167–182

  42. Geuskens G, Nedelkos G (1996) The post-irradiation oxidation of polypropylene. II: influence on the mechanical properties. Polym Degrad Stab 51:223–225. https://doi.org/10.1016/0141-3910(95)00211-1

    Article  CAS  Google Scholar 

  43. Nasef MM, Saidi H, Dahlan KZM (2002) Investigation of electron irradiation induced-changes in poly(vinylidene fluoride) films. Polym Degrad Stab 75:85–92. https://doi.org/10.1016/S0141-3910(01)00206-3

    Article  CAS  Google Scholar 

  44. Noura H, Amar B, Hocine D et al (2018) Effect of gamma irradiation aging on mechanical and thermal properties of alfa fiber—reinforced polypropylene composites. J Thermoplast Compos Mater 31:598–615. https://doi.org/10.1177/0892705717714831

    Article  CAS  Google Scholar 

  45. Singh A (1999) Irradiation of polyethylene: some aspects of crosslinking and oxidative degradation. Radiat Phys Chem 56:375–380. https://doi.org/10.1016/S0969-806X(99)00328-X

    Article  CAS  Google Scholar 

  46. Gillen K, Clough RL (1991) Accelerated aging methods for predicting long-term mechanical performance of polymers. In: Clegg DW, Collyer AA (eds) Applied science. Elsevier, London, pp 157–223

    Google Scholar 

  47. ASTM International ISO/ASTM STANDARD D638–14 (2003) Standard test method for tensile properties of plastics. ASTM Int 08:46–58

    Google Scholar 

  48. Manual U (2016) Our most advanced 3D printer just got even better

  49. ISO/ASTM 51026-15 (2015) standard practice for using the fricke dosimetry system. ASTM Int

  50. ISO/ASTM51276 (2002) Practice for use of a polymethylmethacrylate dosimetry system. ASTM Int

  51. Ferreto HFR, Oliveira ACF, Gaia R et al (2014) Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres. In: AIP conference proceedings. pp 236–239

  52. Elsharkawy ER, Hegazi EM, El-megeed AAA (2015) Effect of gamma irradiation on the structural and properties of high density effect of gamma irradiation on the structural and properties of high density polyethylene (HDPE). Int J Mater Chem Phys 1:384–387

    Google Scholar 

  53. Adurafimihan Abiona A, Gabriel Osinkolu A (2010) Gamma-irradiation induced property modification of polypropylene. Int J Phys Sci 5:960–967

    CAS  Google Scholar 

  54. Fayolle B, Audouin L, Verdu J (2003) Radiation induced embrittlement of PTFE. Polymer (Guildf) 44:2773–2780. https://doi.org/10.1016/S0032-3861(03)00116-2

    Article  CAS  Google Scholar 

  55. Chieng B, Ibrahim N, Yunus W, Hussein M (2013) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers (Basel) 6:93–104. https://doi.org/10.3390/polym6010093

    Article  CAS  Google Scholar 

  56. Razavi SM, Dadbin S, Frounchi M (2014) Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films. Radiat Phys Chem 96:12–18. https://doi.org/10.1016/j.radphyschem.2013.08.010

    Article  CAS  Google Scholar 

  57. Kodama Y, Machado LDB, Giovedi C, Nakayama K (2007) Gamma radiation effect on structural properties of PLLA/PCL blends. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 265:294–299. https://doi.org/10.1016/j.nimb.2007.08.062

    Article  CAS  Google Scholar 

  58. Dorati R, Colonna C, Serra M et al (2008) γ-Irradiation of PEGd, lPLA and PEG-PLGA multiblock copolymers: I. Effect of irradiation doses. AAPS PharmSciTech 9:718. https://doi.org/10.1208/s12249-008-9103-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kolanthai E, Bose S, Bhagyashree KS et al (2015) Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. Phys Chem Chem Phys 17:22900–22910. https://doi.org/10.1039/C5CP02609A

    Article  CAS  PubMed  Google Scholar 

  60. Gulmine J, Janissek P, Heise H, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563. https://doi.org/10.1016/S0142-9418(01)00124-6

    Article  CAS  Google Scholar 

  61. Abou Zeid HM, Ali ZI, Abdel Maksoud TM, Khafagy RM (2000) Structure-property behavior of polyethylene exposed to different types of radiation. J Appl Polym Sci 75:179–200. https://doi.org/10.1002/(SICI)1097-4628(20000110)75:2%3c179:AID-APP1%3e3.0.CO;2-B

    Article  Google Scholar 

  62. Chattopadhyay S, Chaki TK, Bhowmick AK (2001) Structural characterization of electron-beam crosslinked thermoplastic elastomeric films from blends of polyethylene and ethylene-vinyl acetate copolymers. J Appl Polym Sci 81:1936–1950. https://doi.org/10.1002/app.1626

    Article  CAS  Google Scholar 

  63. Archodoulaki V-M, Koch T, Rodriguez A, Seidler S (2011) Influence of different sterilization procedures on the morphological parameters and mechanical properties of ultra-high-molecular-weight polyethylene. J Appl Polym Sci 120:1875–1884. https://doi.org/10.1002/app.31437

    Article  CAS  Google Scholar 

  64. Mallégol J, Carlsson D, Deschênes L (2001) Post-γ-irradiation reactions in vitamin E stabilised and unstabilised HDPE. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 185:283–293. https://doi.org/10.1016/S0168-583X(01)00944-2

    Article  Google Scholar 

  65. Madera-Santana TJ, Meléndrez R, González-García G et al (2016) Effect of gamma irradiation on physicochemical properties of commercial poly(lactic acid) clamshell for food packaging. Radiat Phys Chem 123:6–13. https://doi.org/10.1016/j.radphyschem.2016.02.001

    Article  CAS  Google Scholar 

  66. Benabid FZ, Kharchi N, Zouai F et al (2019) Impact of co-mixing technique and surface modification of ZnO nanoparticles using stearic acid on their dispersion into HDPE to produce HDPE/ZnO nanocomposites. Polym Polym Compos 27:389–399. https://doi.org/10.1177/0967391119847353

    Article  CAS  Google Scholar 

  67. Gu J, Xu H, Wu C (2014) Thermal and crystallization properties of HDPE and HDPE/PP blends modified with DCP. Adv Polym Technol 33:1–5. https://doi.org/10.1002/adv.21384

    Article  CAS  Google Scholar 

  68. Sajwan MB, Singh RB, Aggarwal S (2007) Characterization of plastic pipes by X-ray diffraction in forensic analysis. Indian J Criminol Crim 28:76–81

    Google Scholar 

Download references

Acknowledgements

Acknowledgments are due to Mr. Mohammad Alutoom (The manager for the Gamma Irradiation Facility at JAEC) and the entire technical team at the gamma irradiation facility for their support and assistance during the irradiation experiments.

Funding

This work was supported by the deanship of research at the Jordan University of Science and Technology [Grant Number 245-2017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Alsabbagh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabbagh, A., Abu Saleem, R., Almasri, R. et al. Effects of gamma irradiation on 3D-printed polylactic acid (PLA) and high-density polyethylene (HDPE). Polym. Bull. 78, 4931–4945 (2021). https://doi.org/10.1007/s00289-020-03349-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03349-3

Navigation