Skip to main content
Log in

The Effect of Gamma and Electron Beam Irradiation on the Biodegradability of PLA Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradation of poly(lactic) acid (PLA) has been studied extensively, but there is only limited knowledge about the effect of irradiation sterilization on its biodegradability. The aim of this work was to examine the aerobic biodegradation of gamma and electron beam irradiated PLA films along with the effects of aging (3, 6, and 9 months of storage) using a direct measurement respirometric system. Commercial PLA film was exposed to a simulated aerobic compost environment, and its mineralization was 96 % at day 85. Gamma and electron beam irradiation affected the biodegradation of the post-irradiated PLA film. Aging irradiated PLA had some potential to increase the biodegradation rate, as the average value of mineralization after 9 months of storage was higher than for the non-irradiated PLA. Comparison of the effect of storage time on the biodegradability of PLA showed a significant increase in biodegradation of the gamma irradiated PLA after 3 months (70 %) and 9 months of storage (130 %). Similarly, there was a significant difference in the biodegradation of electron beam irradiated PLA between 3 months (68 %) and 9 months of storage (120 %). Due to the priming effect, the percent mineralization of gamma irradiated and E-beam irradiated PLA after 9 months of storage was greater than 100 %. Both non-irradiated and irradiated PLA films can be considered biodegradable plastics since they showed mineralization percentage larger than 90 % of that of the positive control at the end of the test period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PLA:

Poly(lactic) acid

CoPLA:

Non-irradiated Poly(lactic acid)

GMPLA:

Gamma irradiated Poly(lactic acid)

EBPLA:

E-beam irradiated Poly(lactic acid)

References

  1. Tomita K, Kuroki Y, Nagai K (1999) J Biosci Bioeng 87:752

    Article  CAS  Google Scholar 

  2. Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) J Biosci Bioeng 92:298

    Article  CAS  Google Scholar 

  3. Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244

    Article  CAS  Google Scholar 

  4. Kijchavengkul T, Kale G, Auras R (2009) Degradation of biodegradable polymers in real and simulated composting conditions. In: Society AC (ed) Washington. American Chemical Society, DC, p 31

    Google Scholar 

  5. Rudnik E (2013) Biodegradability testing of compostable polymer. In: Ebnesajjad S (ed) Handbook of biopolymers and biodegradable plastics. William Andrew, Waltham, p 213

    Chapter  Google Scholar 

  6. Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273

    Article  CAS  Google Scholar 

  7. Pagga U, Schafer A, Muller RJ, Pantke M (2001) Chemosphere 42:319

    Article  CAS  Google Scholar 

  8. ASTM (2011) ASTM D5338-11 Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. Incorporating thermophilic temperatures. ASTM International, West Conshohocken

    Google Scholar 

  9. Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2002) J Polym Environ 8:183

    Article  Google Scholar 

  10. Degli-Innocenti F (2005) Biodegradation behaviour of polymers in the soil. In: Bastioli C (ed) Handbook of Biodegradable Polymers. Rapra Technology Limited, Shawbury

    Google Scholar 

  11. Mayer JM, Kaplan DL, Stote RE, Dixon KL, Shupe AE, Allen AL et al (1996) Biodegradation of polymer films in marine and soil environments. In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washington, p 159

    Chapter  Google Scholar 

  12. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2006) Polym Test 25:1006

    Article  CAS  Google Scholar 

  13. Snook JB (1994) Biodegradability of polylactide film in simulated composting environments. Michigan State University, East Lansing

    Google Scholar 

  14. Selke SEM (2012) Green packaging. In: Boye JI, Arcand Y (eds) Green technologies in food production and processing. Springer, New York, pp 443 (in press)

  15. Tuominen J, Kylmä J, Kapanen A, Venelampi O, Itävaara M, Seppälä J (2002) Biomacromolecules 3:445

    Article  CAS  Google Scholar 

  16. Itävaara M, Karjomaa S, Selin J-F (2002) Chemosphere 46:879

    Article  Google Scholar 

  17. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degradation Stab 91:620

    Article  CAS  Google Scholar 

  18. Tsuji H (2011) Hydrolytic degradation. In: Auras RA, Lim L-T, Selke SE, Tsuji H (eds) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, p 345

    Google Scholar 

  19. Tokiwa Y, Jarerat A (2004) Biotechnol Lett 26:771

    Article  CAS  Google Scholar 

  20. Shimao M (2001) Curr Opin Biotechnol 12:242

    Article  CAS  Google Scholar 

  21. Kim D, Rhee Y (2003) Appl Microbiol Biotechnol 61:300

    Article  CAS  Google Scholar 

  22. Jarerat A, Tokiwa Y (2001) Macromol Biosci 1:136

    Article  CAS  Google Scholar 

  23. Torres A, Li S, Roussos S, Vert M (1996) Appl Environ Microbiol 62:2393

    CAS  Google Scholar 

  24. Charlesby A (1987) Radiation chemistry principles, applications. VCH, New York

    Google Scholar 

  25. Buchalla R, Schuttler C, Bogl KW (1993) J Food Protect 56:991

    CAS  Google Scholar 

  26. Loo SCJ, Ooi CP, Boey YCF (2005) Biomaterials 26:1359

    Article  CAS  Google Scholar 

  27. O’Donnell JH (1989) Radiation chemistry of polymers. In: Reichmanis E, O’Donnell JH (eds) The effects of radiation on high-technology polymers. ACS Symposium Series 381. American Chemical Society, Washington, p 1

    Chapter  Google Scholar 

  28. Sandler GD (2004) Fate of energy absorbed by polymers during irradiation treatment. In: Komolprasert V, Morehouse KM (eds) Irradiation of food and packaging. ACS Symposium series 875. American Chemical Society, Washington, p 203

    Chapter  Google Scholar 

  29. Blanco I, Siracusa V (2013) J Therm Anal Calorim 112:1171

    Article  CAS  Google Scholar 

  30. Benyathiar P, Selke S, Auras R (2015) J Polym Environ 23:449

    Article  CAS  Google Scholar 

  31. Lovinger AJ (1990) Radiation effects on the structure, properties of poly(vinylidene fluoride) and its ferroelectric co-polymers. In: Clough RL, Shalaby SW (eds) Radiation effects on polymers. American Chemical Society, Washington, p 84

    Google Scholar 

  32. Pionteck J, Hu J, Pompe G, Albrecht V, Schulze U, Borsig E (2000) Polymer 41:7915

    Article  CAS  Google Scholar 

  33. Nugroho P, Mitomo H, Yoshii F, Kume T (2001) Polym Degrad Stab 72:337

    Article  CAS  Google Scholar 

  34. Zaidi L, Bruzaud S, Kaci M, Bourmaud A, Gautier N, Grohens Y (2013) Polym Degrad Stab 98:348

    Article  CAS  Google Scholar 

  35. Dorati R, Colonna C, Tomasi C, Genta I, Modena T, Faucitano A et al (2008) AAPS PharmSciTech 9:1110

    Article  CAS  Google Scholar 

  36. Loo SCJ, Ooi CP, Boey YCF (2004) Polym Degrad Stab 83:259

    Article  CAS  Google Scholar 

  37. Shen F (2007) Ultrahigh-molecular-weight polyethylene (UHMWPE) in joint replacement. In: Jenkins M (ed) Biomedical polymers. CRC Press Boca Raton, FL, p 141

    Chapter  Google Scholar 

  38. ASTM (1999) ASTM D 6400-99 Standard specification for compostable plastics. ASTM International, West Conshohocken, PA

  39. EN (2000) EN 13432, Packaging, requirements for packaging recoverable through composting and biodegradation- Test scheme and evaluation criteria for the final acceptance of packaging. European Committee for Standardization, Brussels

  40. Kimura T, Ishida Y, Ihara N, Saito Y (2002) J Jpn Soc Agric Mach 64(3):115

    Google Scholar 

  41. Ghorpade VM, Gennadios A, Hanna MA (2001) Bioresour Technol 76:57

    Article  CAS  Google Scholar 

  42. Nampoothiri KM, Nair NR, John RP (2010) Bioresour Technol 101:8493

    Article  Google Scholar 

  43. Kale G, Auras R, Singh SP, Narayan R (2007) Polym Test 26:1049

    Article  CAS  Google Scholar 

  44. Bellia G, Tosin M, Floridi G, Degli-Innocenti F (1999) Polym Degrad Stab 66:65

    Article  CAS  Google Scholar 

  45. Shen J, Bartha R (1996) Appl Environ Microbiol 62:1428

    CAS  Google Scholar 

  46. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Polym Degrad Stab 95:2641

    Article  CAS  Google Scholar 

  47. Degli-Innocenti F, Bastioli C (1997) J Environ Polym Degr 5:183

    CAS  Google Scholar 

  48. Gu JD, Yang SW, Eberiel RD, McCarthy SP, Gross RA (1994) J Environ Polym Degr 2:129

    Article  CAS  Google Scholar 

  49. Stevens ES (2003) Biocycle 44:24

    CAS  Google Scholar 

  50. van der Zee M (2005) Biodegradability of polymers—Mechanisms and evaluation methods. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, Shawbury, p 1

    Google Scholar 

  51. Jay JM (1996) Modern food microbiology, 5th edn. Chapman & Hall, London

    Book  Google Scholar 

  52. Komolprasert V (2007) Packaging for food treated with ionizing radiation. In: Han JH (ed) Packaging for non-thermal processing of food. Blackwell Publishing, Ames, IA, p 1

    Google Scholar 

  53. Gupta MC, Deshmukh VG (1983) Polymer 24:827

    Article  CAS  Google Scholar 

  54. Hamilton JV, Greer KW, Ostiguy P, Pai PN (1996) Anisotropic properties in ultrahigh-molecular-weight polyethylene after Cobalt-60 irradiation. In: Clough RL, Shalaby SW (eds) Irradiation of polymer. American Chemical Society, Washington, p 81

    Chapter  Google Scholar 

  55. ASTM (2012) ASTM D 6400-12 Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. ASTM International, West Conshohocken

    Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the Nestle Company for partially funding this project, BI-AX International Inc. for providing the PLA film, Dr. Thitisilp Kijchavengkul and Edgar Castro Aguirre for assisting with DMR system, and Dr. Dharmendra K. Mishra for assisting in Matlab® program and statistical data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Selke.

Additional information

To represent the sample codes at different storage times, 3M (3 months), 6M (6 months) and 9M (9 months) were used as an extension to the codes presented in “Abbreviations”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyathiar, P., Selke, S. & Auras, R. The Effect of Gamma and Electron Beam Irradiation on the Biodegradability of PLA Films. J Polym Environ 24, 230–240 (2016). https://doi.org/10.1007/s10924-016-0766-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0766-7

Keywords

Navigation