Skip to main content

Mechanical Property Degradation of Polylactic Acid (PLA) 3D Printed Parts under Ultraviolet Radiation

  • Conference paper
  • First Online:
Managing and Implementing the Digital Transformation (ISIEA 2022)

Abstract

This study investigates the effects of ultraviolet radiation (UV) on mechanical properties of 3D printed parts made of polylactic acid (PLA). Groups of samples 3D printed from thermoplastic PLA by a material extrusion process (MEX) were subjected to artificial UV radiation of two different wavelengths, 310 nm UVB and 254 nm UVC in order to replicate the aging effect prolonged UV exposure has on such parts. After exposure the samples were tested for tensile or compressive strength and the results were compared to an unexposed control group. PLA parts exposed to radiation for 24 h exhibited reduced mechanical strength, with a reduction in tensile strength of 5% to 9% and a reduction in compressive strength of 6% to 13%. Radiation in the UVC spectrum had a stronger impact on mechanical properties. Scanning Electron Microscopy (SEM) was used to analyze the internal structure of exposed samples and revealed microstructural changes at the fracture interface of tensile loaded parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Factsheet. Radiation: Ultraviolet (UV) radiation (2016). https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv). Accessed 10 Apr 2022

  2. Dale Wilson, B., Moon, S., Armstrong, F.: Comprehensive review of ultraviolet radiation and the current status on sunscreens. J. Clin. Aesthetic Dermatol. 5(9), 18–23 (2012)

    Google Scholar 

  3. Yousif, E., Haddad, R.: Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2(1), 1–32 (2013). https://doi.org/10.1186/2193-1801-2-398

    Article  Google Scholar 

  4. Markoviová, L., Zatkalíková, V.: The effect of UV aging on structural polymers. IOP Conf. Ser. Mater. Sci. Eng. 465, 012004 (2019). https://doi.org/10.1088/1757-899X/465/1/012004

  5. Diffey, B.L.: Sources and measurement of ultraviolet radiation. Methods 28(1), 4–13 (2002). https://doi.org/10.1016/s1046-2023(02)00204-9. PMID: 12231182

    Article  Google Scholar 

  6. Gallagher, R.P., Lee, T.K.: Adverse effects of ultraviolet radiation: a brief review. Prog. Biophys. Mol. Biol. 92(1), 119–131 (2006). https://doi.org/10.1016/j.pbiomolbio.2006.02.011

    Article  Google Scholar 

  7. Buonanno, M., Welch, D., Shuryak, I., et al.: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 10, 10285 (2020). https://doi.org/10.1038/s41598-020-67211-2

    Article  Google Scholar 

  8. Szeto, W., Yam, W.C., Huang, H., et al.: The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infect. Dis. 20, 127 (2020). https://doi.org/10.1186/s12879-020-4847-9

    Article  Google Scholar 

  9. Ploydaeng, M., Rajatanavin, N., Rattanakaemakorn, P.: UV-C light: a powerful technique for inactivating microorganisms and the related side effects to the skin. Photodermatol. Photoimmunol. Photomed. 37, 12–19 (2021). https://doi.org/10.1111/phpp.12605

    Article  Google Scholar 

  10. Rayna, T., Striukova, L.: From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technol. Forecast. Soc. Chang. 102, 214–224 (2016). https://doi.org/10.1016/j.techfore.2015.07.023

    Article  Google Scholar 

  11. Hirpa, L.: Beyond rapid prototyping: study of prospects and challenges of 3D printing in functional part fabrication (2016). https://doi.org/10.2991/iwama-16.2016.25

  12. World Health Organization: Press release. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020 (2020). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 10 Apr 2022

  13. Wesemann, C., et al.: 3-D printed protective equipment during COVID-19 pandemic. Materials 13, 1997 (2020). https://doi.org/10.3390/ma13081997

    Article  Google Scholar 

  14. Manoj, A., Bhuyan, M., Banik, S.R., Sankard, M.R.: 3D printing of nasopharyngeal swabs for COVID-19 diagnose: past and current trends. Mater. Today Proc. 44, 1361–1368 (2021). https://doi.org/10.1016/j.matpr.2020.11.505

    Article  Google Scholar 

  15. Hoernke, K., et al.: Frontline healthcare workers’ experiences with personal protective equipment during the COVID-19 pandemic in the UK: a rapid qualitative appraisal. BMJ Open 11(1), e046199 (2021). https://doi.org/10.1136/bmjopen-2020-046199

    Article  Google Scholar 

  16. Jain, U.: Risk of COVID-19 due to shortage of personal protective equipment. Cureus 12(6), e8837 (2020). https://doi.org/10.7759/cureus.8837

    Article  Google Scholar 

  17. Raeiszadeh, M., Adeli, B.: A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. ACS Photonics 7(11), 2941–2951 (2020). https://doi.org/10.1021/acsphotonics.0c01245

    Article  Google Scholar 

  18. Nicolau, T., Filho, N.G., Zille, A.: Ultraviolet-C as a viable reprocessing method for disposable masks and filtering facepiece respirators. Polymers 13, 801 (2021). https://doi.org/10.3390/polym13050801

    Article  Google Scholar 

  19. Chandran, K.M., Ramamurthy, P.C., Kanjo, K., Narayan, R., Menon, S.R.: Efficacy of Ultraviolet-C devices for the disinfection of personal protective equipment fabrics and N95 respirators. J. Res. Nat. Inst. Stan. Technol. 126, 126023 (2021). https://doi.org/10.6028/jres.126.023

  20. Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., Yan, C.: A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 102(9–12), 2877–2889 (2019). https://doi.org/10.1007/s00170-019-03332-x

    Article  Google Scholar 

  21. Jamshidian, M., Arab-Tehrany, E., Imran, M., Jacquot, M., Desobry, S.: Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010). https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  Google Scholar 

  22. Li, G., et al.: Synthesis and biological application of polylactic acid. Molecules 25(21), 5023 (2020). https://doi.org/10.3390/molecules25215023

    Article  Google Scholar 

  23. Kale, G., Auras, R., Singh, S.P., Narayan, R.: Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 26(8), 1049–1061 (2007). https://doi.org/10.1016/j.polymertesting.2007.07.006

    Article  Google Scholar 

  24. Standard ISO 4892-3:2016: Plastics—Methods of Exposure to Laboratory Light Sources—Part 3: Fluorescent UV Lamps. https://www.iso.org/standard/67793.html. Accessed 10 Apr 2022

  25. Standard ISO 291:2008: Plastics—Standard Atmospheres for Conditioning and Testing. https://www.iso.org/standard/50572.html. Accessed 10 Apr 2022

  26. Tao, Y., et al.: A review on voids of 3D printed parts by fused filament fabrication. J. Market. Res. 15, 4860–4879 (2021). https://doi.org/10.1016/j.jmrt.2021.10.108

    Article  Google Scholar 

  27. Rasselet, D., Ruellan, A., Guinault, A., Miquelard-Garnier, G., Sollogoub, C., Fayolle, B.: Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. Eur. Polym. J. 50, 109–116 (2014). https://doi.org/10.1016/j.eurpolymj.2013.10.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Gheorghe Amza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zapciu, A., Amza, C.G., Ciolacu, M., Francalanza, E., Rauch, E. (2022). Mechanical Property Degradation of Polylactic Acid (PLA) 3D Printed Parts under Ultraviolet Radiation. In: Matt, D.T., Vidoni, R., Rauch, E., Dallasega, P. (eds) Managing and Implementing the Digital Transformation. ISIEA 2022. Lecture Notes in Networks and Systems, vol 525. Springer, Cham. https://doi.org/10.1007/978-3-031-14317-5_3

Download citation

Publish with us

Policies and ethics