Skip to main content
Log in

Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

3D printing technology has attracted more and more interest in rapid manufacturing of components with complex shapes by pre-design. In the present work, various content of Li0.44Zn0.2Fe2.36O4 (LZFO) particles as reinforcement were added to polylactic acid (PLA) matrix for preparing 3D-printed composites by using fused deposition modeling (FDM). The structure and morphological characteristics were systematically examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Scanning electron microscopy (SEM). Furthermore, mechanical, thermal and microwave absorption properties of 3D-printed LZFO/PLA composites with different contents were investigated in detail. Tensile strength and Young’s modulus of the LZFO/PLA composite with 10 wt% LZFO content were remarkably improved than that of original PLA. Thermal stability of the composite with 5 wt% LZFO content was the best among the test specimens. Microwave absorption property suggested that the reflection loss (RL) of the composite with 20 wt% LZFO can reach − 32.4 dB at 3.8 GHz and − 31.8 dB at 16.1 GHz with the thickness of 6 mm, and the effective bandwidth corresponding to RL (≤ − 10 dB) reaches 2.1 GHz (3.1–5.2 GHz) and 1.8 GHz (14–15.8 GHz). Therefore, 3D-printed LZFO/PLA composites prepared by FDM can be an incredibly promising novel 3D printable microwave absorption candidate with other comprehensive properties. Moreover, microwave absorbing materials prepared by 3D printing technology especially using FDM may become the development trend of this kind of materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Standard A. F2792, Standard Terminology for Additive Manufacturing Technologies (ASTM International, West Conshohocken, 2012)

    Google Scholar 

  2. Y. He, Y. Wu, J. Fu, Q. Gao, J. Qiu, Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis. 28, 1658–1678 (2016)

    Article  CAS  Google Scholar 

  3. C. Zhu, T. Liu, F. Qian, T.Y.-J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016)

    Article  CAS  Google Scholar 

  4. J. Zhong, M. Yi, H.H. Bau, Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens. Actuators A 96, 59–66 (2002)

    Article  CAS  Google Scholar 

  5. S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, lowcost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7, e49365 (2012)

    Article  CAS  Google Scholar 

  6. M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012)

    Article  CAS  Google Scholar 

  7. G.N. Meloni, 3D printed and microcontrolled: the one hundred dollars scanningelectrochemical microscope. Anal. Chem. 89, 8643–8649 (2017)

    Article  CAS  Google Scholar 

  8. A.P. West, S.P. Sambu, D.W. Rosen, A process planning method for improving build performance in stereolithography. Comput. Aided Des. 33, 65–79 (2001)

    Article  Google Scholar 

  9. P. Dudek, FDM 3D printing technology in manufacturing composite elements. Arch. Metal. Mater. 58, 1415–1418 (2013)

    Article  CAS  Google Scholar 

  10. J. Park, M.J. Tari, H.T. Hahn, Characterization of the laminated object manufacturing (LOM) process. Rapid Prototype J. 6, 36–50 (2000)

    Article  Google Scholar 

  11. J.P. Krut, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering. Assem. Autom. 23, 357–371 (2003)

    Article  Google Scholar 

  12. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)

    Article  CAS  Google Scholar 

  13. H.J. Wu, G.L. Wu, L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  CAS  Google Scholar 

  14. K. Prashantha, F. Roger, Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. J. Macromol. Sci. 54, 24–29 (2017)

    Article  CAS  Google Scholar 

  15. X. Wang, M. Jiang, Z.W. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective. Composite Part B 110, 442–458 (2017)

    Article  CAS  Google Scholar 

  16. L.E. Murr, S.M. Gaytan, F. Medin, H. Lopez, E. Martinez, B.I. Machad, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. 368, 1999–2032 (2010)

    Article  CAS  Google Scholar 

  17. F. Castles, D. Isakov, A. Lui, Q. Lei, C.E.J. Dancer, Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 6, 22714 (2016)

    Article  CAS  Google Scholar 

  18. E.C. Carola, G. Francesca, S. Francesca, F. Scalera, F. Montagna, A. Sannino, The feasibility of printing polylactic acid-nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J Appl. Polym. Sci. 134, 44656–44667 (2017)

    Google Scholar 

  19. M. Corey, R. Armando, T.P. Angel, C. Rocha, M. Liang, Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten–polycarbonate polymer matrix composite for space-based applications. J. Electron. Mater. 44, 2598–2607 (2015)

    Article  Google Scholar 

  20. F.D. Ning, W.L. Cong, J.J. Qiu, J.H. Wei, S.R. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composite Part B 80, 369–378 (2015)

    Article  CAS  Google Scholar 

  21. R. Matthew, M. Jake, A. Zeeshan, A.E. Miller, M.R. Hartings, The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci. Technol. Adv. Mater. 17, 89–97 (2016)

    Article  Google Scholar 

  22. R.G. Yan, C.R. Zhang, Synthesis and characteristic of Li0.35Zn0.3Fe2.35O4 ferrite fiber using filter paper template. Mater Sci Eng B 189, 27–31 (2014)

    Article  Google Scholar 

  23. R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)

    Article  CAS  Google Scholar 

  24. D.G. Li, C. Chen, W. Rao, W.H. Lu, Y.H. Xiong, Preparation and microwave absorption properties of polyaniline/Mn0.8Zn0.2Fe2O4 nanocomposite in 2–18 GHz. Mater. Sci. 25, 76–81 (2014)

    Google Scholar 

  25. P.J. Liu, Z.J. Yao, J.T. Zhou, Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide. Rsc Adv. 5, 93739–93748 (2015)

    Article  CAS  Google Scholar 

  26. M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth. Met. 189, 34–41 (2014)

    Article  CAS  Google Scholar 

  27. J.T. Zhou, Z.J. Yao, Y.X. Chen, D.B. Wei, Y.B. Wu, T.S. Xu, Mechanical and thermal properties of graphene oxide/phenolic resin composite. Polym Compos. 34, 1245–1249 (2013)

    Article  CAS  Google Scholar 

  28. S. Farah, D. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016)

    Article  CAS  Google Scholar 

  29. D.D.L. Chung, Composite Materials Science and Applications, 2nd edn. (Springer, London, 2010)

    Book  Google Scholar 

  30. D. Gay, S. Hoa, S. Tsai, Composite Materials Design and Applications, 4th edn. (CRC, Boca Raton, 2003)

    Google Scholar 

  31. D. Kinet, P. Megret, K.W. Goossen, L. Qiu, D. Heider, C. Caucheteur, Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors 14, 7394–7419 (2014)

    Article  Google Scholar 

  32. Q.T. Shubhra, A. Alam, M.A. Quaiyyum, Mechanical properties of polypropylene composites: a review. J Thermoplast. Compos. Mater. 26, 362–391 (2011)

    Article  Google Scholar 

  33. V.M.F. Evora, A. Shukla, Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater. Sci. Eng. A 361, 358–366 (2003)

    Article  Google Scholar 

  34. S.P. Qian, K.C. .Sheng, PLA toughened by bamboo cellulose nanowhiskers: role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 148, 59–69 (2017)

    Article  CAS  Google Scholar 

  35. P.Sun,G. Liu, D. Lv, D.J. Wang, Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. Rsc Adv. 5, 52916–52925 (2015)

    Article  Google Scholar 

  36. A. Elahi, A. Shakoor, M. Irfan, N.A. Niaz, K. Mahmood, M.S. Awan, Effect of loading ZnNiCrFe2O4 nanoparticles on structural and microwave absorption properties of polyaniline nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9489–9495 (2016)

    Article  CAS  Google Scholar 

  37. Z.X. Li, X.H. Li, Y. Zong, G.G. Tan, Y. Sun, Y.Y. Lan, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017)

    Article  CAS  Google Scholar 

  38. P.J. Liu, L. Li, Z.J. Yao, M.M. Du, T.T. Yao, Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J. Mater. Sci. Mater. Electron. 27, 7776–7787 (2016)

    Article  CAS  Google Scholar 

  39. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  CAS  Google Scholar 

  40. Z. Wang, H. Bi, P. Wang, M. Wang, Z. Liu, L. Shen, X. Liu, Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)

    Article  CAS  Google Scholar 

  41. J. Feng, Y. Zong, Y. Sun, Y. Zhang, X.H. Li, Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018)

    Article  CAS  Google Scholar 

  42. P.J. Liu, Z.J. Yao, J.T. Zhou, Z.H. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave bsorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  CAS  Google Scholar 

  43. H.J. Wu, S.H. Qu, K.J. Lin, Y.C. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Foundation of Graduate Innovation Center in NUAA (kfjj20170601), National Natural Science Foundation of China (No. 51702158), and Fundamental Research Funds for the Central Universities (No. NS2017036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Yao or Jintang Zhou.

Ethics declarations

Conflicting interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Yao, Z., Lin, H. et al. Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling. J Mater Sci: Mater Electron 29, 19296–19307 (2018). https://doi.org/10.1007/s10854-018-0056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0056-3

Navigation