Skip to main content
Log in

The removal of heavy metal ions from aqueous solutions by hydrogels based on N-isopropylacrylamide and acrylic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The temperature- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels, poly(NIPAM-co-AA), were synthesized by radical polymerization. The characterizations of hydrogels based on N-isopropylacrylamide (NIPAM) and acrylic acid (AA) before and after adsorption of heavy metal ions was performed by Fourier transform infrared spectroscopy and scanning electron microscopy. Heavy metal ions (Cr, Mn, Pb) adsorbed onto poly(NIPAM-co-AA) hydrogels were identified using the energy-dispersive X-ray spectroscopy. The mechanism of the water transport within the matrix of synthesized poly(NIPAM-co-AA) hydrogels at pH 4.5 is Super Case II diffusion, and at pH 6.8 corresponds to the non-Fickian diffusion mechanism. The effect of pH, temperature, contact time, and the initial concentration of heavy metals on the adsorption process of Cr(VI), Mn(II), and Pb(II) ions from aqueous solutions onto poly(NIPAM-co-AA) hydrogels were investigated. The kinetic and equilibrium data were best fitted by the pseudo-second-order model and Langmuir adsorption isotherm. Thermodynamic results indicate that the removal process of heavy metal ions from aqueous solutions by poly(NIPAM-co-AA) hydrogels was spontaneous and exothermic in nature. Maximum adsorption capacities of poly(NIPAM-co-AA) hydrogels for heavy metal ions decrease in the following order: Pb(II) > Cr(VI) > Mn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kelter PB, Grundman J, Hage DS, Carr JD, Castro-Acuña CM (1997) A discussion of water pollution in the United States and Mexico; with high school laboratory activities for the analysis of lead, atrazine, and nitrate. J Chem Educ 74:1413–1421. https://doi.org/10.1021/ed074p1413

    Article  CAS  Google Scholar 

  2. Júnior OK, Gurgel LVA, de Freitas RP, Gil LF (2009) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr Polym 77:643–650. https://doi.org/10.1016/j.carbpol.2009.02.016

    Article  CAS  Google Scholar 

  3. Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques-a case study. Anal Chim Acta 538:355–374. https://doi.org/10.1016/j.aca.2005.02.006

    Article  CAS  Google Scholar 

  4. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. https://doi.org/10.1038/333134a0

    Article  CAS  PubMed  Google Scholar 

  5. Honnen W, Rath K, Schlegel T, Schwinger A, Frahne D (2001) Chemical analyses of water, sediment and biota in two small streams in southwest Germany. J Aquat Ecosyst Stress Recovery 8:195–213. https://doi.org/10.1023/A:1012945427446

    Article  CAS  Google Scholar 

  6. Gallo M, Trento A, Alvarez A, Beldoménico H, Campagnoli D (2006) Dissolved and particulate heavy metals in the Salado river (Santa Fe, Argentina). Water Air Soil Pollut 174:367–384. https://doi.org/10.1007/s11270-006-9128-8

    Article  CAS  Google Scholar 

  7. Smith RG (1972) Five of potential significance. In: Lec DHK (ed) Metallic contaminants and human health. Academic Press, New York, pp 139–162

    Google Scholar 

  8. Kaufaman DB, DiNicola W, McIntosh R (1970) Acute potassium dichromate poisoning. Treated by peritoneal dialysis. Am J Dis Child 119:374–376. https://doi.org/10.1001/archpedi.1970.02100050376021

    Article  Google Scholar 

  9. Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead(II) ions on rice husk ash. J Hazard Mater 163:1254–1264. https://doi.org/10.1016/j.jhazmat.2008.07.119

    Article  CAS  PubMed  Google Scholar 

  10. Takeda A (2003) Manganese action in brain function. Brain Res Rev 41:79–87. https://doi.org/10.1016/S0165-0173(02)00234-5

    Article  CAS  PubMed  Google Scholar 

  11. Mohanty K, Jha M, Meikap BC, Biswas MN (2005) Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem Eng Sci 60:3049–3059. https://doi.org/10.1016/j.ces.2004.12.049

    Article  CAS  Google Scholar 

  12. Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Memon AR (2007) Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic assisted pseudo-digestion. J Agron Crop Sci 193:218–228. https://doi.org/10.1111/j.1439-037X.2007.00261.x

    Article  CAS  Google Scholar 

  13. Ghaedi M, Asadpour E, Vafaie A (2006) Simultaneous preconcentration and determination of copper, nickel, cobalt, lead, and iron content using a surfactant-coated alumina. Bull Chem Soc Jpn 79:432–436. https://doi.org/10.1246/bcsj.79.432

    Article  CAS  Google Scholar 

  14. Nassar MM (2006) Adsorption of Fe3+ and Mn2+ from ground water onto maize cobs using batch adsorber and fixed bed column. Sep Sci Technol 41:943–959. https://doi.org/10.1080/01496390600588796

    Article  CAS  Google Scholar 

  15. Fei C, Huang D, Feng S (2012) Adsorption behavior of amphoteric double-network hydrogel based on poly(acrylic acid) and silica gel. J Polym Res 19:9929–9935. https://doi.org/10.1007/s10965-012-9929-y

    Article  CAS  Google Scholar 

  16. Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216. https://doi.org/10.1016/S0304-386X(00)00160-2

    Article  CAS  Google Scholar 

  17. Al-qudah YHF, Mahmoud GA, Abdel Khalek MA (2014) Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. J Radiat Res Appl Sci 7:135–145. https://doi.org/10.1016/j.jrras.2013.12.008

    Article  CAS  Google Scholar 

  18. Roy PK, Swami V, Kumar D, Rajagopal C (2011) Removal of toxic metals using superabsorbent polyelectrolytic hydrogels. J Appl Polym Sci 122:2415–2423. https://doi.org/10.1002/app.34384

    Article  CAS  Google Scholar 

  19. Yetimoğlu EK, Kahraman MV, Ercan Ö, Akdemir ZS, Apohan NK (2007) N-Vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67:451–460. https://doi.org/10.1016/j.reactfunctpolym.2007.02.007

    Article  CAS  Google Scholar 

  20. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  PubMed  Google Scholar 

  21. Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim YJ, Hoffman JM, Uto K, Aoyagi T (2014) Smart Hydrogels. In: Ohashi N, Ohmura T, Tateyama Y, Taniguchi T, Terabe K, Naito M, Hanagata N, Miyano K (eds) Smart biomaterials. Springer Japan, Tokyo, pp 9–65

    Chapter  Google Scholar 

  22. Souda P, Sreejith L (2015) Magnetic hydrogel for better adsorption of heavy metals from aqueous solutions. J Environ Chem Eng 3:1882–1891. https://doi.org/10.1016/j.jece.2015.03.007

    Article  CAS  Google Scholar 

  23. Mahmoud GA, Mohamed SF (2012) Removal of lead ions from aqueous solution using (sodium alginate/itaconic acid) hydrogel prepared by gamma radiation. Aust J Basic Appl Sci 6:262–273

    CAS  Google Scholar 

  24. Lo IMC, Yin K, Tang SCN (2011) Combining material characterization with single and multi-oxyanion adsorption for mechanistic study of chromate removal by cationic hydrogel. J Environ Sci 23:1004–1010. https://doi.org/10.1016/S1001-0742(10)60507-4

    Article  CAS  Google Scholar 

  25. Warshawasky A (1987) Chelating ion exchangers. In: Streat M, Naden D (eds) Ion exchange and sorption processes in hydrometallurgy, critical reports on applied chemistry, vol 15. Wiley, New York, pp 166–225

    Google Scholar 

  26. Chauhan GS, Kumar S, Kumari A, Sharma R (2003) Study on the synthesis, characterization, and sorption of some metal ions on gelatin- and acrylamide-based hydrogels. J Appl Polym Sci 90:3856–3871. https://doi.org/10.1002/app.13086

    Article  CAS  Google Scholar 

  27. Chen JJ, Ahmad AL, Ooi BS (2014) Thermo-responsive properties of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel and its effect on copper ion removal and fouling of polymer-enhanced ultrafiltration. J Memb Sci 469:73–79. https://doi.org/10.1016/j.memsci.2014.05.062

    Article  CAS  Google Scholar 

  28. Ju XJ, Zhang SB, Zhou MY, Xie R, Yang L, Chu LY (2009) Novel heavy-metal adsorption material: ion-recognition p(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167:114–118. https://doi.org/10.1016/j.jhazmat.2008.12.089

    Article  CAS  PubMed  Google Scholar 

  29. Peppas NA (1991) Physiological responsive gels. J Bioact Compat Polym 6:241–246. https://doi.org/10.1177/088391159100600303

    Article  CAS  Google Scholar 

  30. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A 2:1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  31. Velada JL, Liu Y, Hugh MB (1998) Effect of pH on the swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers. Macromol Chem Phys 199:1127–1134. https://doi.org/10.1002/(sici)1521-3935(19980601)199:6<1127::aid-macp1127>3.0.co;2-9

  32. Lin CL, Chiu WY, Lee CF (2006) Preparation, morphology, and thermoresponsive properties of poly(N-isopropylacrylamide)-based copolymer microgels. J Polym Sci A Polym Chem 44:356–370. https://doi.org/10.1002/pola.21134

    Article  CAS  Google Scholar 

  33. Chen H, Fang Y (2013) Synthesis and characterization of temperature and pH responsive poly(N-isopropylacrylamide) copolymer. 2013 AIChE annual meeting global challenges for engineering a sustainable future, San Francisco, California, USA, pp 123

  34. Chen JJ, Ahmad AL, Ooi BS (2013) Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: equilibrium isotherms, kinetic and thermodynamic studies. J Environ Chem Eng 1:339–348. https://doi.org/10.1016/j.jece.2013.05.012

    Article  CAS  Google Scholar 

  35. Chen H, Zhang J, Qian Z, Liu F, Chen X, Hu Y, Gu Y (2008) In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel. Nanotechnology 19:185707–185716. https://doi.org/10.1088/0957-4484/19/18/185707

    Article  CAS  PubMed  Google Scholar 

  36. Abu Samah NH, Heard CM (2013) Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). Int J Pharm 453:630–640. https://doi.org/10.1016/j.ijpharm.2013.05.042

    Article  CAS  PubMed  Google Scholar 

  37. Venegas-Sanchez JA, Kusunoki T, Yamamoto M, Kobayash T (2013) Sono-respond on thermosensitive polymer microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid). Ultrason Sonochem 20:1271–1275. https://doi.org/10.1016/j.ultsonch.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  38. Hu X, Hao X, Wu Y, Zhang J, Zhang X, Wang PC, Zou G, Liang XJ (2013) Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J Mater Chem B 1:1109–1118. https://doi.org/10.1039/C2TB00223J

    Article  CAS  PubMed  Google Scholar 

  39. Farooqi ZH, Khan HU, Shah SM, Siddiq M (2017) Stability of poly(N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration. Arab J Chem 10:329–335. https://doi.org/10.1016/j.arabjc.2013.07.031

    Article  CAS  Google Scholar 

  40. Palopoli CM, Etcheverry SB, Baran EJ (1988) Vibrational and thermal behaviour of nicotinium dichromate. Thermochim Acta 131:273–277. https://doi.org/10.1016/0040-6031(88)80080-7

    Article  CAS  Google Scholar 

  41. Bates JB, Toth LM, Quist AS, Boyd GE (1973) Vibrational spectra of crystalline, molten and aqueous potassium dichromate. Spectrochim Acta A 29:1585–1600. https://doi.org/10.1016/0584-8539(73)80109-6

    Article  Google Scholar 

  42. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications, vol 31. ACS symposium series, Washington DC, pp 1–36

  43. Park K, Chen J, Park H (2001) Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties. US6271278 B1, USA

  44. Zhang XZ, Yang YY, Wang FJ, Chung TS (2002) Thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties. Langmuir 18:2013–2018. https://doi.org/10.1021/la011325b

    Article  CAS  Google Scholar 

  45. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: A review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  46. Bajpai AK, Sharma M (2006) Preparation and characterization of novel pH-sensitive binary grafted polymeric blends of gelatin and poly(vinyl alcohol): Water sorption and blood compatibility study. J Appl Polym Sci 100:599–617. https://doi.org/10.1002/app.23370

    Article  CAS  Google Scholar 

  47. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  48. Bajpai SK (2001) Swelling–deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels. J Appl Polym Sci 80:2782–2789. https://doi.org/10.1002/app.1394

    Article  CAS  Google Scholar 

  49. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567. https://doi.org/10.1016/0142-9612(95)91130-Q

    Article  CAS  PubMed  Google Scholar 

  50. Mercea P (2008) Models for diffusion in polymers. In: Piringer OG, Baner AL (eds) Plastic packaging: interactions with food and pharmaceuticals. Wiley-VCH, Weinheim, pp 123–162

    Chapter  Google Scholar 

  51. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  52. Hansen CM (2010) The significance of the surface condition in solutions to the diffusion equation: explaining “anomalous” sigmoidal, Case II, and Super Case II absorption behavior. Eur Polym J 46:651–662. https://doi.org/10.1016/j.eurpolymj.2009.12.008

    Article  CAS  Google Scholar 

  53. Cai W, Anderson EC, Gupta RB (2001) Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels. Ind Eng Chem Res 40:2283–2288. https://doi.org/10.1021/ie0009435

    Article  CAS  Google Scholar 

  54. Lu Q, Yu J, Gao J, Yang W, Li Y (2012) A promising absorbent of acrylic acid/poly(ethylene glycol) hydrogel prepared by glow-discharge electrolysis plasma. Cent Eur J Chem 10:1349–1359. https://doi.org/10.2478/s11532-012-0055-9

    Article  CAS  Google Scholar 

  55. Chen CY, Lin MS, Hsu KR (2008) Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups. J Hazard Mater 152:986–993. https://doi.org/10.1016/j.jhazmat.2007.07.074

    Article  CAS  PubMed  Google Scholar 

  56. El Hag Ali A, Shawky HA, Abd El Rehim HA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337–2344. https://doi.org/10.1016/S0014-3057(03)00150-2

    Article  CAS  Google Scholar 

  57. Ho YS, McKay G (1998) Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340. https://doi.org/10.1205/095758298529696

    Article  CAS  Google Scholar 

  58. Abdel-Halim ES, Al-Deyab SS (2014) Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym 75:1–8. https://doi.org/10.1016/j.reactfunctpolym.2013.12.003

    Article  CAS  Google Scholar 

  59. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  60. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  61. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223. https://doi.org/10.1021/i160018a011

    Article  CAS  Google Scholar 

  62. Li Z, Wang Y, Wu N, Chen Q, Wu K (2013) Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism. Environ Sci Pollut Res 20:1511–1525. https://doi.org/10.1007/s11356-012-0973-2

    Article  CAS  Google Scholar 

  63. Antić KM, Babić MM, Vuković JS, Onjia AE, Filipović JM, Tomić SLj (2016) Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels. Hem Ind 70:695–705. https://doi.org/10.2298/HEMIND151225006A

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the project MNTR TR-34012 financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors are grateful for the support provided by the Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Zdravković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdravković, A., Nikolić, L., Ilić-Stojanović, S. et al. The removal of heavy metal ions from aqueous solutions by hydrogels based on N-isopropylacrylamide and acrylic acid. Polym. Bull. 75, 4797–4821 (2018). https://doi.org/10.1007/s00289-018-2295-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2295-0

Keywords

Navigation