Skip to main content

Smart Hydrogels

  • Chapter
  • First Online:
Smart Biomaterials

Abstract

Hydrogels are three-dimensional (3D) materials with the ability to absorb large amounts of water while maintaining their dimensional stability. Hydrogels with stimuli-responsive properties can undergo reversible volume phase transitions or gel–sol phase transitions upon minute changes in the environmental condition. These types of stimuli-responsive hydrogels are also called ‘smart’ hydrogels. Many physical and chemical stimuli have been applied to induce various responses of the smart hydrogel systems. This chapter focuses on smart hydrogels from the viewpoints of their preparation methods, characterizations, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Del Rev 54:13–36. doi:http://dx.doi.org/10.1016/S0169-409X(01)00240-X

  2. Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Del Rev 11:59–84. doi:http://dx.doi.org/10.1016/0169-409X(93)90027-2

  3. Schacht EH (2004) Polymer chemistry and hydrogel systems. J Phys: Conf Ser 3:22

    Google Scholar 

  4. Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364. doi:10.1002/(sici)1097-0290(19960520)50:4<357:aid-bit2>3.0.co;2-k

    Google Scholar 

  5. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Del Rev 54:3–12. doi:http://dx.doi.org/10.1016/S0169-409X(01)00239-3

  6. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880. doi:10.1021/cr000108x

    Google Scholar 

  7. Narain R (2011) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels. Wiley

    Google Scholar 

  8. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392. doi:10.1126/science.281.5375.389

    Google Scholar 

  9. Wang C, Stewart RJ, Kopeček J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Google Scholar 

  10. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118. doi:10.1038/185117a0

    Google Scholar 

  11. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater 69B:216–222. doi:10.1002/jbm.b.30000

    Google Scholar 

  12. Kickhöfen B, Wokalek H, Scheel D, Ruh H (1986) Chemical and physical properties of a hydrogel wound dressing. Biomaterials 7:67–72. doi:http://dx.doi.org/10.1016/0142-9612(86)90092-X

  13. Yoo H-J, Kim H-D (2008) Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B Appl Biomater 85B:326–333. doi:10.1002/jbm.b.30950

    Google Scholar 

  14. Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62. doi:10.1002/(sici)1097-4636(199901)44:1<53:aid-jbm6>3.0.co;2-w

    Google Scholar 

  15. Jafari B, Rafie F, Davaran S (2011) Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. BioImpacts 1:135–143. doi:10.5681/bi.2011.018

    Google Scholar 

  16. Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y (2012) A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Ed 51:2124–2128. doi:10.1002/anie.201106252

    Google Scholar 

  17. Silva AKA, Richard C, Bessodes M, Scherman D, Merten O-W (2008) Growth factor delivery approaches in hydrogels. Biomacromolecules 10:9–18. doi:10.1021/bm801103c

    Google Scholar 

  18. Tanigo T, Takaoka R, Tabata Y (2010) Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Controlled Release 143:201–206. doi:http://dx.doi.org/10.1016/j.jconrel.2009.12.027

  19. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926. doi:10.1126/science.8493529

    Google Scholar 

  20. Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Controlled Release 6:297–305. doi:http://dx.doi.org/10.1016/0168-3659(87)90083-6

  21. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Del Rev 64, Suppl:18–23. doi:http://dx.doi.org/10.1016/j.addr.2012.09.010

  22. T-A Asoh, Matsusaki M, Kaneko T, Akashi M (2008) Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv Mater 20:2080–2083. doi:10.1002/adma.200702727

    Google Scholar 

  23. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484. doi:10.1002/adma.200700625

    Google Scholar 

  24. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Google Scholar 

  25. Techawanitchai P, Ebara M, Idota N, Asoh T-A, Kikuchi A, Aoyagi T (2012) Photo-switchable control of pH-responsive actuators via pH jump reaction. Soft Matter 8:2844–2851

    Google Scholar 

  26. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Google Scholar 

  27. Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T (2013) Rewritable and shape-memory soft matter with dynamically tunable microchannel geometry in a biological temperature range. Soft Matter

    Google Scholar 

  28. Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2005) Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv Mater 17:2723–2727. doi:10.1002/adma.200402068

    Google Scholar 

  29. Dong LC, Hoffman AS (1986) Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control. J Controlled Release 4:223–227. doi:http://dx.doi.org/10.1016/0168-3659(86)90006-4

  30. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) A novel approach to observing synergy effects of PHSRN on integrin–RGD binding using intelligent surfaces. Adv Mater 20:3034–3038. doi:10.1002/adma.200702308

    Google Scholar 

  31. Kim Y-J, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and releases cells. Angew Chem Int Ed 51:10537–10541. doi:10.1002/anie.201204139

    Google Scholar 

  32. Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Del Rev 54:79–98. doi:http://dx.doi.org/10.1016/S0169-409X(01)00241-1

  33. Watanabe M, Akahoshi T, Tabata Y, Nakayama D (1998) Molecular specific swelling change of hydrogels in accordance with the concentration of guest molecules. J Am Chem Soc 120:5577–5578. doi:10.1021/ja973070n

    Google Scholar 

  34. Feil H, Bae YH, Feijen J, Kim SW (1991) Molecular separation by thermosensitive hydrogel membranes. J Membr Sci 64:283–294. doi:http://dx.doi.org/10.1016/0376-7388(91)80099-R

  35. Freitas RFS, Cussler EL (1987) Temperature sensitive gels as extraction solvents. Chem Eng Sci 42:97–103. doi:http://dx.doi.org/10.1016/0009-2509(87)80213-0

  36. Zhang X-Z (2005) Reflexive polymers and hydrogels. Macromol Chem Phys 206:1691–1691. doi:10.1002/macp.200500275

    Google Scholar 

  37. Matsuo ES, Tanaka T (1988) Kinetics of discontinuous volume-phase transition of gels. J Chem Phys 89:1695–1703

    Google Scholar 

  38. Wu XS, Hoffman AS, Yager P (1992) Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J Polym Sci, Part A: Polym Chem 30:2121–2129. doi:10.1002/pola.1992.080301005

    Google Scholar 

  39. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Google Scholar 

  40. Ebara M, Aoyagi T, Sakai K, Okano T (2000) Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-Isopropylacrylamide copolymer gels. Macromolecules 33:8312–8316. doi:10.1021/ma000121j

    Google Scholar 

  41. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242

    Google Scholar 

  42. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182. doi:http://dx.doi.org/10.1016/0144-8617(88)90001-X

  43. Goosen MFA, O’Shea GM, Gharapetian HM, Chou S, Sun AM (1985) Optimization of microencapsulation parameters: Semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 27:146–150. doi:10.1002/bit.260270207

    Google Scholar 

  44. Gombotz WR, Wee S (1998) Protein release from alginate matrices. Adv Drug Del Rev 31:267–285. doi:http://dx.doi.org/10.1016/S0169-409X(97)00124-5

  45. Mumper RJ, Huffman AS, Puolakkainen PA, Bouchard LS, Gombotz WR (1994) Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads. J Controlled Release 30:241–251. doi:http://dx.doi.org/10.1016/0168-3659(94)90030-2

  46. Iskakov RM, Kikuchi A, Okano T (2002) Time-programmed pulsatile release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers. J Controlled Release 80:57–68. doi:http://dx.doi.org/10.1016/S0168-3659(01)00551-X

  47. Andrianov AK, Payne LG, Visscher KB, Allcock HR, Langer R (1994) Hydrolytic degradation of ionically cross-linked polyphosphazene microspheres. J Appl Polym Sci 53:1573–1578. doi:10.1002/app.1994.070531203

    Google Scholar 

  48. Liu L-S, Liu S-Q, Ng SY, Froix M, Ohno T, Heller J (1997) Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. J Controlled Release 43:65–74. doi:http://dx.doi.org/10.1016/S0168-3659(96)01471-X

  49. Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE (2005) Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials 26:2129–2135. doi:http://dx.doi.org/10.1016/j.biomaterials.2004.05.035

  50. Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Del Rev 31:197–221. doi:http://dx.doi.org/10.1016/S0169-409X(97)00121-X

  51. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Google Scholar 

  52. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Controlled Release 63:155–163. doi:http://dx.doi.org/10.1016/S0168-3659(99)00194-7

  53. Jeong B, Choi YK, Bae YH, Zentner G, Kim SW (1999) New biodegradable polymers for injectable drug delivery systems. J Controlled Release 62:109–114. doi:http://dx.doi.org/10.1016/S0168-3659(99)00061-9

  54. Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Wan Kim S, Sunamoto J (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Controlled Release 54:313–320. doi:http://dx.doi.org/10.1016/S0168-3659(98)00017-0

  55. Taniguchi I, Akiyoshi K, Sunamoto J (1999) Self-aggregate nanoparticles of cholesteryl and galactoside groups-substituted pullulan and their specific binding to galactose specific lectin, RCA120. Macromol Chem Phys 200:1554–1560. doi:10.1002/(sici)1521-3935(19990601)200:6<1554:aid-macp1554>3.0.co;2-v

    Google Scholar 

  56. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161. doi:http://dx.doi.org/10.1016/S0142-9612(00)00116-2

  57. Molinaro G, Leroux J-C, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23:2717–2722. doi:http://dx.doi.org/10.1016/S0142-9612(02)00004-2

  58. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Controlled Release 103:609–624. doi:http://dx.doi.org/10.1016/j.jconrel.2004.12.019

  59. Kim SY, Cho SM, Lee YM, Kim SJ (2000) Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78:1381–1391. doi:10.1002/1097-4628(20001114)78:7<1381:aid-app90>3.0.co;2-m

    Google Scholar 

  60. Bajpai AK, Shrivastava J (2005) In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polym Int 54:1524–1536. doi:10.1002/pi.1878

    Google Scholar 

  61. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379. doi:http://dx.doi.org/10.1016/j.biomaterials.2005.11.015

  62. Liu J, Lin S, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298:117–125. doi:http://dx.doi.org/10.1016/j.ijpharm.2005.04.006

  63. Eagland D, Crowther NJ, Butler CJ (1994) Complexation between polyoxyethylene and polymethacrylic acid—The importance of the molar mass of polyoxyethylene. Eur Polym J 30:767–773. doi:http://dx.doi.org/10.1016/0014-3057(94)90003-5

  64. Bell CL, Peppas NA (1996) Modulation of drug permeation through interpolymer complexed hydrogels for drug delivery applications. J Controlled Release 39:201–207. doi:http://dx.doi.org/10.1016/0168-3659(95)00154-9

  65. Haglund BO, Joshi R, Himmelstein KJ (1996) An in situ gelling system for parenteral delivery. J Controlled Release 41:229–235. doi:http://dx.doi.org/10.1016/0168-3659(96)01333-8

  66. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595–601. doi:10.1007/bf01412597

    Google Scholar 

  67. Stenekes RJH, Talsma H, Hennink WE (2001) Formation of dextran hydrogels by crystallization. Biomaterials 22:1891–1898. doi:http://dx.doi.org/10.1016/S0142-9612(00)00375-6

  68. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules 25:4114–4118. doi:10.1021/ma00042a011

    Google Scholar 

  69. de Jong SJ, De Smedt SC, Wahls MWC, Demeester J, Kettenes-van den Bosch JJ, Hennink WE (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686. doi:10.1021/ma992067g

  70. Lim DW, Park TG (2000) Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J Appl Polym Sci 75:1615–1623. doi:10.1002/(sici)1097-4628(20000328)75:13<1615:aid-app7>3.0.co;2-l

    Google Scholar 

  71. Mohammed JS, Murphy WL (2009) Bioinspired design of dynamic materials. Adv Mater 21:2361–2374. doi:10.1002/adma.200803785

    Google Scholar 

  72. Kollman PA (1977) Noncovalent interactions. Acc Chem Res 10:365–371. doi:10.1021/ar50118a003

    Google Scholar 

  73. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci 96:11211–11216. doi:10.1073/pnas.96.20.11211

    Google Scholar 

  74. Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci 98:1404–1409. doi:10.1073/pnas.98.4.1404

    Google Scholar 

  75. Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci 98:2317–2322. doi:10.1073/pnas.041619198

    Google Scholar 

  76. Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Genetic engineering of structural protein polymers. Biotechnol Progr 6:198–202. doi:10.1021/bp00003a006

    Google Scholar 

  77. Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Zhou X, Burman D, Aukerman L, Stedronsky ER (1998) In situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Controlled Release 53:105–117. doi:http://dx.doi.org/10.1016/S0168-3659(97)00243-5

  78. Chen L, Kopeček J, Stewart RJ (2000) Responsive hybrid hydrogels with volume transitions modulated by a titin immunoglobulin module. Bioconjugate Chem 11:734–740. doi:10.1021/bc000046h

    Google Scholar 

  79. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769. doi:http://www.nature.com/nature/journal/v399/n6738/suppinfo/399766a0_S1.html

  80. Lee SJ, Park K (1996) Synthesis and characterization of sol–gel phase-reversible hydrogels sensitive to glucose. J Mol Recognit 9:549–557. doi:10.1002/(sici)1099-1352(199634/12)9:5/6<549:aid-jmr299>3.0.co;2-c

    Google Scholar 

  81. Obaidat A, Park K (1996) Characterization of glucose dependent gel–sol phase transition of the polymeric glucose-concanavalin a hydrogel system. Pharm Res 13:989–995. doi:10.1023/a:1016090103979

    Google Scholar 

  82. Obaidat AA, Park K (1997) Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18:801–806. doi:http://dx.doi.org/10.1016/S0142-9612(96)00198-6

  83. Matsuo ES, Tanaka T (1992) Patterns in shrinking gels. Nature 358:482–485

    Google Scholar 

  84. Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823

    Google Scholar 

  85. Tanaka T, Sun S-T, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Mechanical instability of gels at the phase transition. Nature 325:796–798

    Google Scholar 

  86. Cadée JA, van Steenbergen MJ, Versluis C, Heck AJR, Underberg WJM, den Otter W, Jiskoot W, Hennink WE (2001) Oxidation of recombinant human interleukin-2 by potassium peroxodisulfate. Pharm Res 18:1461–1467. doi:10.1023/a:1012213108319

    Google Scholar 

  87. Edman P, Ekman B, Sjöholm I (1980) Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci 69:838–842. doi:10.1002/jps.2600690725

    Google Scholar 

  88. Park K (1988) Enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery: synthesis and characterization. Biomaterials 9:435–441. doi:http://dx.doi.org/10.1016/0142-9612(88)90009-9

  89. Heller J, Pangburn SH, Roskos KV (1990) Development of enzymatically degradable protective coatings for use in triggered drug delivery systems: derivatized starch hydrogels. Biomaterials 11:345–350. doi:http://dx.doi.org/10.1016/0142-9612(90)90112-4

  90. Giammona G, Pitarresi G, Cavallaro G, Buscemi S, Saiano F (1999) New biodegradable hydrogels based on a photocrosslinkable modified polyaspartamide: synthesis and characterization. Biochimica et Biophysica Acta (BBA)—Gen Subj 1428:29–38. doi:http://dx.doi.org/10.1016/S0304-4165(99)00051-3

  91. Martens P, Anseth KS (2000) Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 41:7715–7722. doi:http://dx.doi.org/10.1016/S0032-3861(00)00123-3

  92. Jin Y, Yamanaka J, Sato S, Miyata I, Yomota C, Yonese M (2001) Recyclable characteristics of hyaluronate–polyhydroxyethyl acrylate blend hydrogel for controlled releases. J Controlled Release 73:173–181. doi:http://dx.doi.org/10.1016/S0168-3659(01)00234-6

  93. Doycheva M, Petrova E, Stamenova R, Tsvetanov C, Riess G (2004) UV-induced cross-linking of poly(ethylene oxide) in aqueous solution. Macromol Mater Eng 289:676–680. doi:10.1002/mame.200400073

    Google Scholar 

  94. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353. doi:http://dx.doi.org/10.1016/j.biomaterials.2008.09.037

  95. Lee HJ, Matsuda T (1999) Surface photograft polymerization on segmented polyurethane using the iniferter technique. J Biomed Mater Res 47:564–567. doi:10.1002/(sici)1097-4636(19991215)47:4<564:aid-jbm13>3.0.co;2-3

    Google Scholar 

  96. Rodrigues MR, Gasetta D (2007) Hydrogels produced by photocrosslinking of dextran chain: characterization and properties. J Carbohydr Chem 26:439–453. doi:10.1080/07328300701737912

    Google Scholar 

  97. Ward JH, Peppas NA (2001) Preparation of controlled release systems by free-radical UV polymerizations in the presence of a drug. J Controlled Release 71:183–192. doi:http://dx.doi.org/10.1016/S0168-3659(01)00213-9

  98. Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomater 8:1838–1848. doi:http://dx.doi.org/10.1016/j.actbio.2011.12.034

  99. Dai WS, Barbari TA (1999) Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol). J Membr Sci 156:67–79. doi:http://dx.doi.org/10.1016/S0376-7388(98)00330-5

  100. Peppas NA, Berner Jr RE (1980) Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 1:158–162. doi:http://dx.doi.org/10.1016/0142-9612(80)90039-3

  101. Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775. doi:http://dx.doi.org/10.1016/0142-9612(95)99639-4

  102. Tabata Y, Ikada Y (1989) Synthesis of gelatin microspheres containing interferon. Pharm Res 6:422–427. doi:10.1023/a:1015991617704

    Google Scholar 

  103. Draye J-P, Delaey B, Van de Voorde A, Van Den Bulcke A, Bogdanov B, Schacht E (1998) In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:99–107. doi:http://dx.doi.org/10.1016/S0142-9612(97)00164-6

  104. Lee KY, Bouhadir KH, Mooney DJ (1999) Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules 33:97–101. doi:10.1021/ma991286z

    Google Scholar 

  105. Bouhadir KH, Kruger GM, Lee KY, Mooney DJ (2000) Sustained and controlled release of daunomycin from cross-linked poly(aldehyde guluronate) hydrogels. J Pharm Sci 89:910–919. doi:10.1002/1520-6017(200007)89:7<910:aid-jps8>3.0.co;2-#

    Google Scholar 

  106. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Controlled Release 69:169–184. doi:http://dx.doi.org/10.1016/S0168-3659(00)00300-X

  107. Hovgaard L, Brøndsted H (1995) Dextran hydrogels for colon-specific drug delivery. J Controlled Release 36:159–166. doi:http://dx.doi.org/10.1016/0168-3659(95)00049-E

  108. Gehrke SH, Uhden LH, McBride JF (1998) Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J Controlled Release 55:21–33. doi:http://dx.doi.org/10.1016/S0168-3659(98)00019-4

  109. Coviello T, Grassi M, Rambone G, Santucci E, Carafa M, Murtas E, Riccieri FM, Alhaique F (1999) Novel hydrogel system from scleroglucan: synthesis and characterization. J Controlled Release 60:367–378. doi:http://dx.doi.org/10.1016/S0168-3659(99)00091-7

  110. Kuijpers AJ, van Wachem PB, van Luyn MJA, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Controlled Release 67:323–336. doi:http://dx.doi.org/10.1016/S0168-3659(00)00221-2

  111. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32:5561–5566. doi:10.1021/ma990514m

    Google Scholar 

  112. de Nooy AEJ, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259–267. doi:10.1021/bm005517h

    Google Scholar 

  113. de Nooy AEJ, Masci G, Crescenzi V (1999) Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules 32:1318–1320. doi:10.1021/ma9815455

    Google Scholar 

  114. Yoshida T, Aoyagi T, Kokufuta E, Okano T (2003) Newly designed hydrogel with both sensitive thermoresponse and biodegradability. J Polym Sci, Part A: Polym Chem 41:779–787. doi:10.1002/pola.10595

    Google Scholar 

  115. Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 30:5255–5264. doi:10.1021/ma970345a

    Google Scholar 

  116. Sperinde JJ, Griffith LG (2000) Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules 33:5476–5480. doi:10.1021/ma000459d

    Google Scholar 

  117. Peppas NA, Merrill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770. doi:10.1002/app.1977.070210704

    Google Scholar 

  118. Kofinas P, Athanassiou V, Merrill EW (1996) Hydrogels prepared by electron irradiation of poly(ethylene oxide) in water solution: unexpected dependence of cross-link density and protein diffusion coefficients on initial PEO molecular weight. Biomaterials 17:1547–1550. doi:http://dx.doi.org/10.1016/0142-9612(96)89781-X

  119. Jabbari E, Nozari S (2000) Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polym J 36:2685–2692. doi:http://dx.doi.org/10.1016/S0014-3057(00)00044-6

  120. Kishi R, Ichijo H, Hirasa O (1993) Thermo-responsive devices using poly(vinyl methyl ether) hydrogels. J Intell Mater Syst Struct 4:533–537. doi:10.1177/1045389x9300400413

    Google Scholar 

  121. Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. In: Dušek K (ed) responsive gels: volume transitions II, vol 110. Advances in polymer science. Springer, Berlin, pp 241–261. doi:10.1007/BFb0021135

  122. Kishi R, Hirasa O, Ichijo H (1997) Fast responsive poly(N-sopropylacrylamide) hydrogels prepared by γ-ray irradiation. Polym Gels Networks 5:145–151. doi:http://dx.doi.org/10.1016/S0966-7822(96)00037-8

  123. Matsukuma D, Yamamoto K, Aoyagi T (2006) Stimuli-responsive properties of n-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir 22:5911–5915. doi:10.1021/la060438y

    Google Scholar 

  124. Bae Y, Okano T, Kim S (1991) “On–Off” thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharm Res 8:531–537. doi:10.1023/a:1015871732706

    Google Scholar 

  125. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 31:6099–6105. doi:10.1021/ma971899g

    Google Scholar 

  126. Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed 11:101–110. doi:10.1163/156856200743526

    Google Scholar 

  127. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4:344–349. doi:10.1021/bm025692t

    Google Scholar 

  128. Ebara M, Aoyagi T, Sakai K, Okano T (2001) The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. J Polym Sci, Part A: Polym Chem 39:335–342. doi:10.1002/1099-0518(20010201)39:3<335:aid-pola1000>3.0.co;2-h

    Google Scholar 

  129. Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer–enzyme switches. Proc Natl Acad Sci 99:16592–16596. doi:10.1073/pnas.262427799

    Google Scholar 

  130. Techawanitchai P, Idota N, Uto K, Ebara M, Aoyagi T (2012) A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction. Sci Technol Adv Mat 13:064202

    Google Scholar 

  131. Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Del Rev 63:1257–1266. doi:http://dx.doi.org/10.1016/j.addr.2011.06.009

  132. Shinkai S, Kinda H, Manabe O (1982) Photoresponsive complexation of metal cations with an azobenzene-crown-azobenzene bridge immobilized in polymer supports. J Am Chem Soc 104:2933–2934. doi:10.1021/ja00374a045

    Google Scholar 

  133. Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules 23:1517–1519. doi:10.1021/ma00207a046

    Google Scholar 

  134. Sumaru K, Ohi K, Takagi T, Kanamori T, Shinbo T (2006) Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22:4353–4356. doi:10.1021/la052899+

    Google Scholar 

  135. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat Commun 3:1270. doi:http://www.nature.com/ncomms/journal/v3/n12/suppinfo/ncomms2280_S1.html

  136. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Google Scholar 

  137. Techawanitchai P, Ebara M, Idota N, Aoyagi T (2012) Light-induced spatial control of pH-jump reaction at smart gel interface. Colloids Surf B Biointerfaces 99:53–59. doi:http://dx.doi.org/10.1016/j.colsurfb.2011.09.039

  138. Osada Y, Hasebe M (1985) Electrically activated mecnanochemical devices using polyelectrolyte gels. Chem Lett 14:1285–1288

    Google Scholar 

  139. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469. doi:10.1126/science.218.4571.467

    Google Scholar 

  140. Lee KK, Cussler EL, Marchetti M, McHugh MA (1990) Pressure-dependent phase transitions in hydrogels. Chem Eng Sci 45:766–767. doi:10.1016/0009-2509(90)87019-o

    Google Scholar 

  141. Zhong X, Wang Y-X, Wang S-C (1996) Pressure dependence of the volume phase-transition of temperature-sensitive gels. Chem Eng Sci 51:3235–3239. doi:http://dx.doi.org/10.1016/0009-2509(95)00344-4

  142. Nichols TC, Fischer TH, Deliargyris EN, Baldwin AS (2001) Role of nuclear factor-kappa B (NF-κB) in inflammation, periodontitis, and atherogenesis. Ann Periodontol 6:20–29. doi:10.1902/annals.2001.6.1.20

    Google Scholar 

  143. Brannon-Peppas L, Peppas NA (1990) Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 11:635–644. doi:http://dx.doi.org/10.1016/0142-9612(90)90021-H

  144. Ghandehari H, Kopečková P, Kopecek J (1997) In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18:861–872. doi:http://dx.doi.org/10.1016/S0142-9612(97)00007-0

  145. Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1988) pH-Controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Controlled Release 8:179–182. doi:http://dx.doi.org/10.1016/0168-3659(88)90044-2

  146. Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Controlled Release 132:164–170. doi:http://dx.doi.org/10.1016/j.jconrel.2008.05.003

  147. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Google Scholar 

  148. Duncan R (1999) Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm Sci Technol Today 2:441–449. doi:http://dx.doi.org/10.1016/S1461-5347(99)00211-4

  149. Garbern JC, Hoffman AS, Stayton PS (2010) Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 11:1833–1839. doi:10.1021/bm100318z

    Google Scholar 

  150. Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, Stayton PS (2010) pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 11:2904–2911. doi:10.1021/bm100652w

    Google Scholar 

  151. Ta T, Convertine AJ, Reyes CR, Stayton PS, Porter TM (2010) Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11:1915–1920. doi:10.1021/bm1004993

    Google Scholar 

  152. Berguig GY, Convertine AJ, Shi J, Palanca-Wessels MC, Duvall CL, Pun SH, Press OW, Stayton PS (2012) Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate. Mol Pharm 9:3506–3514. doi:10.1021/mp300338s

    Google Scholar 

  153. Brownlee M, Cerami A (1979) A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206:1190–1191. doi:10.1126/science.505005

    Google Scholar 

  154. Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on−off regulation of insulin release. J Am Chem Soc 120:12694–12695. doi:10.1021/ja982975d

    Google Scholar 

  155. Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4:1410–1416. doi:10.1021/bm034139o

    Google Scholar 

  156. Matsumoto A, Yoshida R, Kataoka K (2004) Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5:1038–1045. doi:10.1021/bm0345413

    Google Scholar 

  157. Miyata T, Jige M, Nakaminami T, Uragami T (2006) Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. P Natl Acad Sci USA 103:1190–1193. doi:10.1073/pnas.0506786103

    Google Scholar 

  158. Suzuki Y, Tanihara M, Nishimura Y, Suzuki K, Kakimaru Y, Shimizu Y (1998) A new drug delivery system with controlled release of antibiotic only in the presence of infection. J Biomed Mater Res 42:112–116. doi:10.1002/(sici)1097-4636(199810)42:1<112:aid-jbm14>3.0.co;2-n

    Google Scholar 

  159. Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6:2927–2929. doi:10.1021/bm0504330

    Google Scholar 

  160. Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Netw 4:111–127. doi:http://dx.doi.org/10.1016/0966-7822(96)00001-9

  161. Suzuki D, Sakai T, Yoshida R (2008) Self-flocculating/self-dispersing oscillation of microgels. Angew Chem Int Ed 47:917–920. doi:10.1002/anie.200703953

    Google Scholar 

  162. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135. doi:10.1021/ja9602511

    Google Scholar 

  163. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1997) Self-oscillating gels. Adv Mater 9:175–178. doi:10.1002/adma.19970090219

    Google Scholar 

  164. Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Del Rev 58:1379–1408. doi:http://dx.doi.org/10.1016/j.addr.2006.09.004

  165. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi:10.1002/adma.200501612

    Google Scholar 

  166. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61

    Google Scholar 

  167. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151–158. doi:10.1021/j150415a018

    Google Scholar 

  168. Kaneko Y, Yoshida R, Sakai K, Sakurai Y, Okano T (1995) Temperature-responsive shrinking kinetics of poly (N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers. J Membr Sci 101:13–22. doi:http://dx.doi.org/10.1016/0376-7388(94)00268-4

  169. Shibayama M (2012) Structure-mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038

    Google Scholar 

  170. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487. doi:10.1002/1521-4095(200104)13:7<485:aid-adma485>3.0.co;2-t

    Google Scholar 

  171. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. doi:10.1002/adma.200304907

    Google Scholar 

  172. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657. doi:http://dx.doi.org/10.1016/0142-9612(96)87644-7

  173. Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–146. doi:http://dx.doi.org/10.1016/j.biomaterials.2006.09.017

  174. Shibayama M (2011) Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polym J 43:18–34

    Google Scholar 

  175. Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N‐isopropyl acrylamide) gels near their volume‐phase transition temperature. J Chem Phys 97:6829–6841. doi:doi:http://dx.doi.org/10.1063/1.463636

  176. Strain DE, Kennelly RG, Dittmar HR (1939) Methacrylate resins. Ind Eng Chem 31:382–387. doi:10.1021/ie50352a003

    Google Scholar 

  177. Okano T, Bae YH, Jacobs H, Kim SW (1990) Thermally on-off switching polymers for drug permeation and release. J Controlled Release 11:255–265. doi:http://dx.doi.org/10.1016/0168-3659(90)90138-J

  178. Yoshida R, Sakai K, Okano T, Sakurai Y (1992) Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: II. Drug permeation. J Biomater Sci Polym Ed 3:243–252. doi:10.1163/156856292x00150

    Google Scholar 

  179. Yoshida R, Sakai K, Okano T, Sakurai Y, You Han B, Sung Wan K (1992) Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: I. Drug release. J Biomater Sci Polym Ed 3:155–162. doi:10.1163/156856291x00250

  180. Yoshida R, Sakai K, Okano T, Sakurai Y (1995) Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. J Biomater Sci Polym Ed 6:585–598. doi:10.1163/156856294x00536

    Google Scholar 

  181. Brazel CS, Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. J Controlled Release 39:57–64. doi:http://dx.doi.org/10.1016/0168-3659(95)00134-4

  182. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33. doi:http://dx.doi.org/10.1016/S0001-8686(99)00023-8

  183. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256. doi:http://dx.doi.org/10.1016/0166-6622(86)80274-8

  184. Omura T, Ebara M, Lai JJ, Yin X, Hoffman AS, Stayton PS (2014) Design of smart nanogels that respond to physiologically relevant pH values and temperature. J Nanosci Nanotechnol 14:2557–2562. doi:10.1166/jnn.2014.855/

  185. Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579. doi:10.1002/mabi.200900402

    Google Scholar 

  186. Winternitz C, Jackson J, Oktaba A, Burt H (1996) Development of a polymeric surgical paste formulation for taxol. Pharm Res 13:368–375. doi:10.1023/a:1016032207246

    Google Scholar 

  187. Malmsten M, Lindman B (1992) Self-assembly in aqueous block copolymer solutions. Macromolecules 25:5440–5445. doi:10.1021/ma00046a049

    Google Scholar 

  188. Wei G, Xu H, Ding PT, Li SM, Zheng JM (2002) Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Controlled Release 83:65–74. doi:http://dx.doi.org/10.1016/S0168-3659(02)00175-X

  189. Cohen S, Lobel E, Trevgoda A, Peled Y (1997) A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Controlled Release 44:201–208. doi:http://dx.doi.org/10.1016/S0168-3659(96)01523-4

  190. Bossard F, Aubry T, Gotzamanis G, Tsitsilianis C (2006) pH-Tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2:510–516

    Google Scholar 

  191. Shim WS, Kim SW, Lee DS (2006) Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 7:1935–1941. doi:10.1021/bm0600567

    Google Scholar 

  192. Shim WS, Yoo JS, Bae YH, Lee DS (2005) Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 6:2930–2934. doi:10.1021/bm050521k

    Google Scholar 

  193. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS (2003) Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J Controlled Release 89:365–374. doi:http://dx.doi.org/10.1016/S0168-3659(03)00099-3

  194. Yin X, Hoffman AS, Stayton PS (2006) Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7:1381–1385. doi:10.1021/bm0507812

    Google Scholar 

  195. Ross RA, Lee M-LT, Onderdonk A (1995) Effect of Candida albicans infection and clotrimazole treatment on vaginal microflora in vitro. Obstet Gynecol 86:925–930. doi:http://dx.doi.org/10.1016/0029-7844(95)00318-L

  196. Chang JY, Oh Y-K, Kong HS, Kim EJ, Jang DD, Nam KT, Kim C-K (2002) Prolonged antifungal effects of clotrimazole-containing mucoadhesive thermosensitive gels on vaginitis. J Controlled Release 82:39–50. doi:http://dx.doi.org/10.1016/S0168-3659(02)00086-X

  197. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. doi:http://dx.doi.org/10.1016/S0142-9612(03)00340-5

  198. Matsuda T (2004) Poly(N-isopropylacrylamide)-grafted gelatin as a thermoresponsive cell-adhesive, mold-releasable material for shape-engineered tissues. J Biomater Sci Polym Ed 15:947–955. doi:10.1163/1568562041271101

    Google Scholar 

  199. Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2:856–863. doi:10.1021/bm010040a

    Google Scholar 

  200. Ha DI, Lee SB, Chong MS, Lee YM, Kim SY, Park YH (2006) Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res 14:87–93. doi:10.1007/bf03219073

    Google Scholar 

  201. Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32:7370–7379. doi:10.1021/ma990130w

    Google Scholar 

  202. Lee DY, Nam JH, Byun Y (2007) Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials 28:1957–1966. doi:http://dx.doi.org/10.1016/j.biomaterials.2006.12.015

  203. Miura S, Teramura Y, Iwata H (2006) Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27:5828–5835. doi:http://dx.doi.org/10.1016/j.biomaterials.2006.07.039

  204. Teramura Y, Kaneda Y, Iwata H (2007) Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)–lipids in the cell membrane. Biomaterials 28:4818–4825. doi:http://dx.doi.org/10.1016/j.biomaterials.2007.07.050

  205. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218. doi:http://dx.doi.org/10.1016/j.biomaterials.2004.04.024

  206. Salinas CN, Cole BB, Kasko AM, Anseth KS (2007) Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng 13:1025–1034. doi:10.1089/ten.2006.0126

    Google Scholar 

  207. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23:47–55

    Google Scholar 

  208. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418. doi:10.1073/pnas.0737381100

    Google Scholar 

  209. Kim S, Chung EH, Gilbert M, Healy KE (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res, Part A 75A:73–88. doi:10.1002/jbm.a.30375

    Google Scholar 

  210. Kwon GH, Park JY, Kim JY, Frisk ML, Beebe DJ, Lee S-H (2008) Biomimetic soft multifunctional miniature aquabots. Small 4:2148–2153. doi:10.1002/smll.200800315

    Google Scholar 

  211. Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738. doi:10.1126/science.268.5218.1735

    Google Scholar 

  212. Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sens Actuators A: Phys 157:96–99. doi:http://dx.doi.org/10.1016/j.sna.2009.10.022

  213. Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci, Part B: Polym Phys 36:1591–1594. doi:10.1002/(sici)1099-0488(19980715)36:9<1591:aid-polb16>3.0.co;2-0

    Google Scholar 

  214. Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–527. doi:10.1126/science.269.5223.525

    Google Scholar 

  215. Stoychev G, Puretskiy N, Ionov L (2011) Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7:3277–3279

    Google Scholar 

  216. Jeong K-U, Jang J-H, Kim D-Y, Nah C, Lee JH, Lee M-H, Sun H-J, Wang C-L, Cheng SZD, Thomas EL (2011) Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms. J Mater Chem 21:6824–6830

    Google Scholar 

  217. He H, Guan J, Lee JL (2006) An oral delivery device based on self-folding hydrogels. J Controlled Release 110:339–346. doi:http://dx.doi.org/10.1016/j.jconrel.2005.10.017

  218. Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A (2011) Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244. doi:10.1021/nl201503e

    Google Scholar 

  219. Luchnikov V, Sydorenko O, Stamm M (2005) Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. Adv Mater 17:1177–1182. doi:10.1002/adma.200401836

    Google Scholar 

  220. Kumar K, Nandan B, Luchnikov V, Simon F, Vyalikh A, Scheler U, Stamm M (2009) A novel approach for the fabrication of silica and silica/metal hybrid microtubes. Chem Mater 21:4282–4287. doi:10.1021/cm901472x

    Google Scholar 

  221. Bassik N, Abebe BT, Laflin KE, Gracias DH (2010) Photolithographically patterned smart hydrogel based bilayer actuators. Polymer 51:6093–6098. doi:http://dx.doi.org/10.1016/j.polymer.2010.10.035

  222. Asoh T-A, Kikuchi A (2010) Electrophoretic adhesion of stimuli-responsive hydrogels. Chem Commun 46:7793–7795

    Google Scholar 

  223. Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3:1223–1230

    Google Scholar 

  224. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  225. Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo B-H, Devadoss C (2000) Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci 97:13488–13493. doi:10.1073/pnas.250273097

    Google Scholar 

  226. Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78:2589–2591

    Google Scholar 

  227. Agarwal AK, Sridharamurthy SS, Beebe DJ, Hongrui J (2005) Programmable autonomous micromixers and micropumps. J Microelectromech Syst 14:1409–1421. doi:10.1109/jmems.2005.859101

    Google Scholar 

  228. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317:1366–1370. doi:10.1126/science.1146885

    Google Scholar 

  229. Yoshida R, Okano T (2010) Stimuli-responsive hydrogels and their application to functional materials. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 19–43. doi:10.1007/978-1-4419-5919-5_2

  230. Vanag VK, Yang L, Dolnik M, Zhabotinsky AM, Epstein IR (2000) Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature 406:389–391

    Google Scholar 

  231. Zaikin AN, Zhabotinsky AM (1970) Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225:535–537

    Google Scholar 

  232. Yoshida R (2010) Self-oscillating gels driven by the belousov-zhabotinsky reaction as novel smart materials. Adv Mater 22:3463–3483. doi:10.1002/adma.200904075

    Google Scholar 

  233. Zhang Y, Guan Y, Zhou S (2006) Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules 7:3196–3201. doi:10.1021/bm060557s

    Google Scholar 

  234. Zhang Y, Guan Y, Zhou S (2007) Permeability control of glucose-sensitive nanoshells. Biomacromolecules 8:3842–3847. doi:10.1021/bm700802p

    Google Scholar 

  235. Sorrell C, Serpe M (2012) Glucose sensitive poly (N-isopropylacrylamide) microgel based etalons. Anal Bioanal Chem 402:2385–2393. doi:10.1007/s00216-012-5736-x

    Google Scholar 

  236. Wang D, Liu T, Yin J, Liu S (2011) Stimuli-responsive fluorescent poly(N-isopropylacrylamide) microgels labeled with phenylboronic acid moieties as multifunctional ratiometric probes for glucose and temperatures. Macromolecules 44:2282–2290. doi:10.1021/ma200053a

    Google Scholar 

  237. Miyata T, Asami N, Uragami T (1999) Preparation of an antigen-sensitive hydrogel using antigen−antibody bindings. Macromolecules 32:2082–2084. doi:10.1021/ma981659g

    Google Scholar 

  238. Tang M, Zhang R, Bowyer A, Eisenthal R, Hubble J (2004) NAD-sensitive hydrogel for the release of macromolecules. Biotechnol Bioeng 87:791–796. doi:10.1002/bit.20210

    Google Scholar 

  239. Oya T, Enoki T, Grosberg AY, Masamune S, Sakiyama T, Takeoka Y, Tanaka K, Wang G, Yilmaz Y, Feld MS, Dasari R, Tanaka T (1999) Reversible molecular adsorption based on multiple-point interaction by shrinkable gels. Science 286:1543–1545. doi:10.1126/science.286.5444.1543

    Google Scholar 

  240. Syrett JA, Becer CR, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem UK 1:978–987

    Google Scholar 

  241. Pawar GM, Koenigs M, Fahimi Z, Cox M, Voets IK, Wyss HM, Sijbesma RP (2012) Injectable hydrogels from segmented PEG-bisurea copolymers. Biomacromolecules 13:3966–3976. doi:10.1021/bm301242v

    Google Scholar 

  242. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Google Scholar 

  243. Yoshie N, Watanabe M, Araki H, Ishida K (2010) Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: polymers from bisfuranic terminated poly(ethylene adipate) and tris-maleimide. Polym Degrad Stab 95:826–829. doi:http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.032

  244. Cui J, Ad Campo (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48:9302–9304

    Google Scholar 

  245. Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ (2011) Tunable, high modulus hydrogels driven by ionic coacervation. Adv Mater 23:2327–2331. doi:10.1002/adma.201004230

    Google Scholar 

  246. Yoshie N, Saito S, Oya N (2011) A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52:6074–6079. doi:http://dx.doi.org/10.1016/j.polymer.2011.11.007

  247. Prager S, Tirrell M (1981) The healing process at polymer–polymer interfaces. J Chem Phys 75:5194–5198

    Google Scholar 

  248. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H (2011) Macroscopic self-assembly through molecular recognition. Nat Chem 3:34–37. doi:http://www.nature.com/nchem/journal/v3/n1/abs/nchem.893.html#supplementary-information

  249. Beck JB, Rowan SJ (2003) Multistimuli, multiresponsive metallo-supramolecular polymers. J Am Chem Soc 125:13922–13923. doi:10.1021/ja038521k

    Google Scholar 

  250. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci. doi:10.1073/pnas.1015862108

    Google Scholar 

  251. Sato T, Ebara M, Tanaka S, Asoh T-A, Kikuchi A, Aoyagi T (2013) Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions. PCCP 15:10628–10635. doi:10.1039/c3cp50165e

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Ebara .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Ebara, M. et al. (2014). Smart Hydrogels. In: Smart Biomaterials. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54400-5_2

Download citation

Publish with us

Policies and ethics