Skip to main content
Log in

Phase structure evolution during mixing and processing of poly(lactic acid)/polycaprolactone (PLA/PCL) blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The morphology of quenched and compression molded samples of poly(lactic acid)/polycaprolactone (PLA/PCL) blend prepared by melt mixing was carefully characterized by the method reflecting eventual nonuniformity of the blend structure and/or broad particle size distribution. Determined number and volume average droplet radii for quenched samples were compared with theory, assuming that flow field in a mixing chamber can be substituted by the shear flow with effective shear rate. An increase in droplet radii during compression molding was compared with theory of the coalescence in quiescent state. Using the concept of effective shear flow to describe mixing leads to a strong disagreement between theory and experiment for the critical droplet radius of its breakup, and for the coalescence efficiency. The theory of coalescence in quiescent state provides fair description of an increase in the number average droplet radius during compression molding, but totally fails at prediction of an increase in the volume average droplet radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Favis BD (2000) Factor influencing the morphology in immiscible polymer blends in melt processing. In: Paul DR, Bucknall CB (eds) Polymer blends, vol 1., FormulationsWiley, New York, pp 501–537

    Google Scholar 

  2. Fortelný I (2006) Theoretical aspects of phase morphology development. In: Harrats C, Thomas S, Groeninckx G (eds) Micro- and nanostructured multiphase polymer blends systems. Taylor and Francis, Boca Raton, pp 43–90

    Google Scholar 

  3. Huang HX (2011) Macro, micro and nanostructured morphologies of multiphase polymer systems. In: Boudenne A, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems, vol 1. Wiley, Chichester, pp 161–249

    Chapter  Google Scholar 

  4. Sundararaj U (2006) Phase morphology development in polymer blends. In: Harrats C, Thomas S, Groeninckx G (eds) Micro- and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis, Boca Raton, pp 133–164

    Google Scholar 

  5. Fortelný I (2001) Analysis of the effect of breakup frequency on the steady droplet size in flowing polymer blends. Rheol Acta 40:485–489. doi:10.1007/s003970100174

    Article  Google Scholar 

  6. Rother AM, Davis RH (2001) The effect of slight deformation on droplet coalescence in linear flow. Phys Fluids 13:1178–1190. doi:10.1063/1.1358871

    Article  CAS  Google Scholar 

  7. Fortelný I, Jůza J (2012) Modeling of the influence of matrix elasticity on coalescence probability of colliding droplets in shear flow. J Rheol 56:1393–1411. doi:10.1122/1.4739930

    Article  Google Scholar 

  8. Jůza J, Fortelný I (2013) Flow induced coalescence in polymer blends. Chem Chem Technol 7:53–60 (issn: 1996-4196)

    Google Scholar 

  9. Fortelný I, Jůza J (2013) Modeling of interface mobility in the description of flow-induced coalescence in immiscible polymer blends. Colloid Polym Sci 291:1863–1870. doi:10.1007/s00396-013-2917-x

    Article  Google Scholar 

  10. Fortelný I, Jůza J (2014) Flow-induced coalescence in polydisperse systems. Macromol Mater Eng 299:1213–1219. doi:10.1002/mame.201400050

    Article  Google Scholar 

  11. Cristini V, Guido S, Alfani A, Blawzdziewicz J, Loewenberg M (2003) Drop breakup and fragment size distribution in shear flow. J Rheol 47:1283–1298. doi:10.1122/1.1603240

    Article  CAS  Google Scholar 

  12. Tokita N (1977) Analysis of morphology formation in elastomer blends. Rubber Chem Technol 50:292–300. doi:10.5254/1.3535144

    Article  CAS  Google Scholar 

  13. Favis BD, Willis JM (1990) Phase size/composition dependence in immiscible blends. Experimental and theoretical considerations. J Polym Sci Part B Polym Phys 28:2259–2269. doi:10.1002/polb.1990.090281208

    Article  CAS  Google Scholar 

  14. Favis BD, Chalifoux JP (1988) Influence of composition on the morphology of polypropylene polycarbonate blends. Polymer 29:1761–1767. doi:10.1016/0032-3861(88)90388-6

    Article  CAS  Google Scholar 

  15. Everaert V, Aerts L, Groeninckx G (1999) Phase morphology development in immiscible PP/(PS/PPE) blends: influence of the melt-viscosity ratio and blend composition. Polymer 40:6627–6644. doi:10.1016/S0032-3861(99)00048-8

    Article  CAS  Google Scholar 

  16. Li YY, Yan D, Ma GQ, Yuan XB, Sheng J (2010) Application of Mie light scattering to the morphological development of polypropylene/polystyrene blends. I. Method for the determination of Mie scattering pages. J Appl Polym Sci 116:1933–1939. doi:10.1002/app.31074

    Article  CAS  Google Scholar 

  17. Bhadane PA, Tsou AH, Cheng J, Favis BD (2008) Morphology development and interfacial erosion in reactive polymer blending. Macromolecules 41:7549–7559. doi:10.1021/ma801390s

    Article  CAS  Google Scholar 

  18. Yin L, Yin J, Shi D, Luan S (2009) Effects of SEBS-g-BTAI on the morphology, structure and mechanical properties of PA6/SEBS blends. Eur Polym J 45:1554–1560. doi:10.1016/j.eurpolymj.2009.01.022

    Article  CAS  Google Scholar 

  19. Zhu L, Song N, Xu X (2009) Real space and wave-number space studies of the phase structure and morphology of iPP/PEOc blends using scanning electron microscopy. Macromol Mater Eng 294:516–524. doi:10.1002/mame.200900068

    Article  CAS  Google Scholar 

  20. Zhang Z, Qiao J (1991) Quantitative prediction of particle size of dispersed phase in elastomer-plastic blends. Polym Eng Sci 31:1553–1557. doi:10.1002/pen.760312109

    Article  CAS  Google Scholar 

  21. Thomas S, Groeninckx G (1999) Nylon 6/ethylene propylene rubber (EPM) blends: phase morphology development during processing and comparison with literature data. J Appl Polym Sci 71:1405–1429. doi:10.1002/(SICI)1097-4628(19990228)71:9<1405:AID-APP6>3.0.CO;2-E

    Article  CAS  Google Scholar 

  22. Lin B, Sundararaj U (2004) Visualization of poly(ether imide) and polycarbonate blending in an internal mixer. J Appl Polym Sci 92:1165–1175

    Article  CAS  Google Scholar 

  23. Oommen S, Zachariah R, Thomas S, Groeninckx G, Moldenaers P, Mewis J (2004) Melt rheology and morphology of uncompatibilized and in situ compatibilized nylon-6/ethylene propylene rubber blends. J Appl Polym Sci 92:252–264. doi:10.1002/app.13652

    Article  CAS  Google Scholar 

  24. Xu X, Yan X, Zhu T, Zhang C, Sheng J (2007) Phase morphology development of polypropylene/ethylene-octene copolymer blends: effects of blend composition and processing conditions. Polym Bull 58:465–478. doi:10.1007/s00289-006-0678-0

    Article  CAS  Google Scholar 

  25. Fortelný I, Dimzoski B, Michálková D, Mikešová J, Kaprálková L (2013) Dependence of the average size of particles formed during steady mixing on their concentration in immiscible polymer blends. J Macromol Sci Part B Phys 52:662–673. doi:10.1080/00222348.2012.720176

    Article  Google Scholar 

  26. Bousmina M, Ait-Kadi A, Faisant JB (1999) Determination of shear rate and viscosity from batch mixer data. J Rheol 43:415–434. doi:10.1122/1.551044

    Article  CAS  Google Scholar 

  27. Fortelný I, Dimzoski B, Michálková D (2012) Phase structure evolution during compression molding of compatibilized polymer blends. J Macromol Sci Part B Phys 51:2026–2033. doi:10.1080/00222348.2012.661668

    Article  Google Scholar 

  28. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233. doi:10.1016/j.eurpolymj.2013.01.019

    Article  CAS  Google Scholar 

  29. Dell’Erba R, Groeninckx G, Maglio G, Malinlonico M, Migliozzi A (2001) Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends. Polymer 42:7831–7840. doi:10.1016/S0032-3861(01)00269-5

    Article  Google Scholar 

  30. Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E (2014) Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. Eur Polym J 58:69–78. doi:10.1016/j.eurpolymj.2014.06.021

    Article  CAS  Google Scholar 

  31. Gardella L, Calabrese M, Monticelli O (2014) PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym Sci 292:2391–2398. doi:10.1007/s00396-014-3328-3

    Article  CAS  Google Scholar 

  32. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(l-lactide) with poly(ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266. doi:10.1016/j.polymer.2013.07.051

    Article  CAS  Google Scholar 

  33. Šlouf M, Kolařík J, Kotek J (2007) Rubber-toughened polypropylene/acrylonitrile-co-butadiene-co-styrene blends: morphology and mechanical properties. Polym Eng Sci 47(582):592. doi:10.1002/pen.20727

    Google Scholar 

  34. Zolotarevová E, Fejfárková Z, Entlicher G, Lapčíková M, Šlouf M, Pokorný D, Sosna A (2008) Can centrifugation affect the morphology of polyethylene wear debris? Wear 265:1914–1917. doi:10.1016/j.wear.2008.04.005

    Article  Google Scholar 

  35. Šlouf M, Ostafińska A, Nevoralová M, Fortelný I (2015) Morphological analysis of polymer systems with broad particle size distribution. Polym Testing 42:8–16. doi:10.1016/j.polymertesting.2014.12.012

    Article  Google Scholar 

  36. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley-VCH, New York

    Google Scholar 

  37. Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214. doi:10.1007/BF01331356

    Article  CAS  Google Scholar 

  38. Tucker CL, Moldenaers P (2002) Microstructural evolution in polymer blends. Annu Rev Fluid Mech 34:177–210. doi:10.1146/annurev.fluid.34.082301.144051

    Article  Google Scholar 

  39. Harrats C, Mekhilef N (2006) Cocontinuous phase morphologies: predictions, generation, and practical application. In: Harrats C, Thomas S, Groeninckx G (eds) Micro- and nanostructured multiphase polymer blends systems. Taylor and Francis, Boca Raton, pp 91–132

    Google Scholar 

  40. Pötschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci Part C Polym Rev C43:87–141. doi:10.1081/MC-120018022

    Article  Google Scholar 

  41. Underwood EE (1970) Quantitative stereology. Addison-Wesley, Reading, p 91

    Google Scholar 

  42. deBruijn RA (1989) Deformation and break-up of drops in simple shear flows. Disertation, Eindhoven University of Technology, The Netherlands

  43. Majesté JC, Santamaría A (2011) Macro, micro and nanostructured morphologies of multiphase polymer systems. In: Boudenne A, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems, vol 1. Wiley, Chichester, pp 311–357

    Chapter  Google Scholar 

  44. Utracki LA (2011) Rheology of polymer blends. In: Isayev AI (ed) Encyclopedia of polymer blends, vol 2. Wiley-VCH, Weinheim, pp 27–107

    Google Scholar 

  45. Noroozi N, Schafer LL, Hatzikiriakos SG (2012) Thermorheological properties of poly(ε-caprolactone)/polylactide blends. Polym Eng Sci 52:2348–2359. doi:10.1002/pen.23186

    Article  CAS  Google Scholar 

  46. Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) Viscoelastic interfacial properties of compatibilized poly((ε-caprolactone)/polylactide blends. J Polym Sci Part B Polym Phys 48:756–765. doi:10.1002/polb.21952

    Article  CAS  Google Scholar 

  47. Ghodgaonkar PG, Sundararaj U (1996) Prediction of dispersed phase drop diameter in polymer blends: the effect of elasticity. Polym Eng Sci 36:1656–1665. doi:10.1002/pen.10562

    Article  CAS  Google Scholar 

  48. Van Oene HJ (1972) Modes of dispersion of viscoelastic fluids in flow. J Colloid Interface Sci 40:448–467. doi:10.1016/0021-9797(72)90355-4

    Article  Google Scholar 

  49. Laun HM (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30:459–502. doi:10.1122/1.549855

    Article  CAS  Google Scholar 

  50. Dimzoski B, Fortelný I, Šlouf M, Sikora A, Michálková D (2013) Morphology evolution during cooling of quiescent immiscible polymer blends: matrix crystallization effect on the dispersed phase coalescence. Polym Bull 70:263–275. doi:10.1007/s00289-012-0848-1

    Article  CAS  Google Scholar 

  51. Fortelný I, Jůza J, Dimzoski B (2012) Coalescence in quiescent polymer blends with a high content of the dispersed phase. Eur Polym J 48:1230–1240. doi:10.1016/j.eurpolymj.2012.04.017

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Grant Agency of the Czech Republic (Grants No. GA14-17921S and No. P106/11/1069) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Fortelný.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortelný, I., Ostafińska, A., Michálková, D. et al. Phase structure evolution during mixing and processing of poly(lactic acid)/polycaprolactone (PLA/PCL) blends. Polym. Bull. 72, 2931–2947 (2015). https://doi.org/10.1007/s00289-015-1445-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1445-x

Keywords

Navigation