Skip to main content
Log in

Phase morphology development of polypropylene/ethylene-octene copolymer blends: effects of blend composition and processing conditions

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Blends of polypropylene (PP)/ethylene-octene copolymer (EOC) was studied. The influences of blend composition and processing conditions on phase morphology development of the blends were investigated by scanning electron microscopy (SEM) in detail. The minor composition formed the dispersed phase and the major composition formed the continuous phase, and the blends formed interpenetrating co-continuous morphology just at the intermediate concentration. The effect of concentration on phase coarsening was explained by the increase of dispersed phase coalescence with dispersed phase concentration’s increase. Phase coarsening and phase fine dispersing were studied. The effect of mixing time on phase morphology development of the blends was investigated, the PP/EOC (80/20) blends has already formed a well-established droplet/matrix morphology after 1.5 min of mixing, and the similar blends phase morphology persisted until 11 min of mixing. The most prominent phenomenon is that the dispersed phase domain deformed from spherical droplet to elliptical droplet, even fibrillar or sheet morphology as the rotor speed increased. The increase of shear rate and elasticity ratio was applied to interpret this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nair SV, Oommen Z, Thomas S (2002) J Appl Polym Sci 86:3537

    Google Scholar 

  2. Jose S, Nair SV, Thomas S, Karger-Kocsis J (2006) J Appl Polym Sci 99:2640

    Google Scholar 

  3. Jose S, Thomas S (2003) Eur Polym J 39:115

    Google Scholar 

  4. Elmendorp JJ, Van Der Vegt AK (1986) Polym Eng Sci 26:1332

    Google Scholar 

  5. Sundararajs U, Macosko CW (1995) Macromolecules 28:2647

    Google Scholar 

  6. Zeng JJ, Aoyama M, Takahashi H (2003) J Appl Polym Sci 89:1791

    Google Scholar 

  7. Jaziri M, Kallel TK, Mbarek S (2005) Polym Int 54:1384

  8. Paul DR, Barlow JW (1980) J Macromol. Sci Rev Macromol Chem 18:109

  9. Bhadane PA, Champagne MF, Huneault MA, Tofan F, Favis BD (2006) Polymer 47:2760

    Google Scholar 

  10. Thomas S, Groeninckx G (1999) J Appl Polym Sci 71:1405

    Google Scholar 

  11. Asadinezhad A, Yavari1 A, Jafari SH, Khonakdar HA, Hässler R (2005) Polymer Bull 54:05

  12. Chaudhry BI, Hage E, Pessan LA (1998) J Appl Polym Sci 67:1605

    Google Scholar 

  13. Scott CS, Macosko CW (1995) Polymer 36:461

    Google Scholar 

  14. Sundararaj U, Macosko CW, Shih CK (1996) Polym Eng Sci 36:1769

    Google Scholar 

  15. Scott CS, Macosko CW, Rolando RJ, Chan HT (1992) Polym Eng Sci 32:1814

    Google Scholar 

  16. Willemse RC, Ramaker EJJ, van Dam J, Posthuma de Boer A (1992) Polymer 40:6651

    Google Scholar 

  17. Favis BD (1992) J Appl Polym Sci 39:285

    Google Scholar 

  18. Taylor GI (1932) Proc R Soc Lond A 138:41

    Google Scholar 

  19. Taylor GI (1934) Proc R Soc Lond A 146:501

    Google Scholar 

  20. Grizzuti N, Bifulco O (1997) Rheol Acta 36:406

  21. Van Gisbergen(1991) J. Ph. D. Thesis Eindhoven University of Tevhnology, Eindhoven, The Netherlands

  22. Roland CM, Bohm GGA (1984) Polym Sci., Polym. Phys 22:79

    Google Scholar 

  23. Tomotika S, Cox R, Mason SG (1972) J Colloid Sci 38:395

    Google Scholar 

  24. Min K, White JL, Fellers JF (1984) Polym Eng Sci 24:1327

    Google Scholar 

  25. Kim BK, DO IH (1996) J Appl Polym Sci 60:2207

  26. Zhang L, Huang R, Li LG, Wang G (2002) J Appl Polym Sci 83:1870

    Google Scholar 

  27. Lee JK, Han CD (1999) Polymer 40:6277

    Google Scholar 

  28. Wu S (1987) Polym Eng Sci 27:335

    Google Scholar 

  29. Favis BD, Chalifoux JP (1987) Polym Eng Sci 27:1591

    Google Scholar 

  30. VanOene H (1972) J Colloid Interface Sci 40:448

    Google Scholar 

  31. Da Silva ALN, Rocha MCG, Coutinho FMB, Bretas R, Scuracchio C (1997) J Appl Polym Sci 66:2005

    Google Scholar 

  32. Da Silva ALN, Rocha MCG, Coutinho FMB, Bretas R, Scuracchio C (2002) J Appl Polym Sci 75:692

    Google Scholar 

  33. Da Silva ALN, Rocha MCG, Coutinho FMB, Bretas RES, Farah M (2002) Polymer Testing 21:647

  34. Paul S, Kale DD (2002) J Appl Polym Sci 84:665

    Google Scholar 

  35. Paul S, Kale DD (2000) J Appl Polym Sci 76:1480

    Google Scholar 

  36. Yang J, Zhang Y, Zhang Y (2003) Polymer 44:5047

    Google Scholar 

  37. McNally T, McShane P, Nally GM, Murphy WR, Cook M, Miller A (2002) Polymer 43:3785

    Google Scholar 

  38. Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Polymer 44:7495

    Google Scholar 

  39. Carriere CJ, Silvis HC (1997) J Appl Polym Sci 66:1175

    Google Scholar 

  40. Li Jiashen (2001) Ph. D. Thesis, Tianjin University, Tianjin, China

  41. Smoluwchowski M (1917) Z Physik Chem 92:129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Yan, X., Zhu, T. et al. Phase morphology development of polypropylene/ethylene-octene copolymer blends: effects of blend composition and processing conditions. Polym. Bull. 58, 465–478 (2007). https://doi.org/10.1007/s00289-006-0678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-006-0678-0

Keywords

Navigation