Skip to main content
Log in

Dynamics of partially miscible polylactide-poly(ε-caprolactone) blends in the presence of cold crystallization

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Previous studies on polylactide (PLA)/poly(ε-caprolactone) (PCL) biodegradable blends revealed enhanced nucleation of PLA. The mechanism by which this enhancement of nuclei density occurs attracted significant interest. In this study, precursors’ transportation from PCL into PLA phase is invoked in order to interpret the experimental findings related to phase separation and crystallization. This mechanism is supported by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The DSC data revealed that PCL crystallinity within the blends is decreased with PLA content. In addition, POM data showed more nuclei within PLA as the PCL weight fraction is increased. The linear viscoelastic properties of these blends in the vicinity of the phase separation and cold crystallization boundary are examined. It is shown that the combination of POM and rheometry allows determining the phase diagram of the blend and identifying changes occurring due to phase separation and crystallization. Thus, the complete phase diagram of such systems can be fully determined, essential in process design and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ajji A, Choplin L (1991) Rheology and dynamics near phase separation in a polymer blend: model and scaling analysis. Macromolecules 24:5221–5223

    Article  Google Scholar 

  • Ajji A, Choplin L, Prud’Homme R (1991) Rheology of polystyrene/poly (vinyl methyl ether) blends near the phase transition. J Polym Sci B Polym Phys 29:1573–1578

    Article  Google Scholar 

  • Arnauts J, De Cooman R, Vandeweerdt P, Koningsveld R, Berghmans H (1994) Calorimetric analysis of liquid—liquid phase separation. Thermochim Acta 238:1–16

    Article  Google Scholar 

  • Bartczak Z, Galeski A, Krasnikova N (1987) Primary nucleation and spherulite growth rate in isotactic polypropylene-polystyrene blends. Polymer 28:1627–1634

    Article  Google Scholar 

  • Biresaw G, Carriere C (2004) Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters. Compos A: Appl Sci Manuf 35:313–320

    Article  Google Scholar 

  • Bousmina M, Lavoie A, Riedl B (2002) Phase segregation in SAN/PMMA blends probed by rheology, microscopy, and inverse gas chromatography techniques. Macromolecules 35:6274–6283

    Article  Google Scholar 

  • Broz M, VanderHart DL, Washburn N (2003) Structure and mechanical properties of poly (D, L-lactic acid)/poly (ε-caprolactone) blends. Biomaterials 24:4181–4190

    Article  Google Scholar 

  • Buddhiranon S, Kim N, Kyu T (2011) Morphology development in relation to the ternary phase diagram of biodegradable PDLLA/PCL/PEO blends. Macromol Chem Phys 212:1379–1391

    Article  Google Scholar 

  • Castillo RV, Muller AJ, Raquez J-M, Dubois P (2010) Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules 43:4149–4160

    Article  Google Scholar 

  • Chen HL, Li LJ, Ou-Yang WC, Hwang JC, Wong WY (1997) Spherulitic crystallization behavior of poly (ε-caprolactone) with a wide range of molecular weight. Macromolecules 30(6):1718–1722

    Article  Google Scholar 

  • Chen C-C, Chueh J-Y, Tseng H, Huang H-M, Lee S-Y (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  Google Scholar 

  • Chopra D, Vlassopoulos D, Hatzikiriakos SG (1998) Shear-induced mixing and demixing in poly (styrene-co-maleic anhydride)/poly (methyl methacrylate) blends. In: Progress and Trends in Rheology V. Springer, pp 71–72

  • Coleman MM, Serman CJ, Bhagwagar DE, Painter PC (1990) A practical guide to polymer miscibility. Polymer 31:1187–1203

    Article  Google Scholar 

  • Correlo V, Boesel L, Bhattacharya M, Mano J, Neves N, Reis R (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A 403:57–68

    Article  Google Scholar 

  • Dell’Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A (2001) Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends. Polymer 42:7831–7840

    Article  Google Scholar 

  • Derakhshandeh M, Doufas AK, Hatzikiriakos SG (2014) Quiescent and shear-induced crystallization of polyprophylenes. Rheol Acta 53:519–535

    Article  Google Scholar 

  • Dreezen G, Groeninckx G, Swier S, Van Mele B (2001) Phase separation in miscible polymer blends as detected by modulated temperature differential scanning calorimetry. Polymer 42:1449–1459

    Article  Google Scholar 

  • Easwar N (1992) Effect of continuous stirring on off-critical and critical samples of a phase-separating binary liquid mixture. Phys Rev Lett 68:186

    Article  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. John Wiley & Sons.

  • Fischer E, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions Kolloid-Zeitschrift und Zeitschrift für. Polymere 251:980–990

    Article  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny J (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036

    Article  Google Scholar 

  • Fredrickson GH, Larson R (1987) Viscoelasticity of homogeneous polymer melts near a critical point. J Chem Phys 86:1553–1560

    Article  Google Scholar 

  • Gałeski A, Bartczak Z, Pracella M (1984) Spherulite nucleation in polypropylene blends with low density polyethylene. Polymer 25:1323–1326

    Article  Google Scholar 

  • Gaona LA, Ribelles JG, Perilla JE, Lebourg M (2012) Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polym Degrad Stab 97:1621–1632

    Article  Google Scholar 

  • Gardella L, Calabrese M, Monticelli O (2014) PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym Sci 292:2391–2398

    Article  Google Scholar 

  • Gibbs JW (1961) The scientific papers of JW Gibbs, vol 1. Dover, New York

    Google Scholar 

  • Guo Q, Groeninckx G (2001) Crystallization kinetics of poly (ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly (ε-caprolactone). Polymer 42:8647–8655

    Article  Google Scholar 

  • Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly (lactic acid)/poly (ε‐caprolactone) blends with reactive processing agents. Polym Eng Sci 48:1359–1368

    Article  Google Scholar 

  • Inaba N, Sato K, Suzuki S, Hashimoto T (1986) Morphology control of binary polymer mixtures by spinodal decomposition and crystallization. 1. Principle of method and preliminary results on PP/EPR. Macromolecules 19:1690–1695

    Article  Google Scholar 

  • Inaba N, Yamada T, Suzuki S, Hashimoto T (1988) Morphology control of binary polymer mixtures by spinodal decomposition and crystallization. 2. Further studies on PP/EPR. Macromolecules 21:407–414

    Article  Google Scholar 

  • James P (1981) Nucleation in glass-forming systems. Rev Adv Ceram 4:1

    Google Scholar 

  • Kapnistos M, Hinrichs A, Vlassopoulos D, Anastasiadis S, Stammer A, Wolf B (1996a) Rheology of a lower critical solution temperature binary polymer blend in the homogeneous, phase-separated, and transitional regimes. Macromolecules 29:7155–7163

    Article  Google Scholar 

  • Kapnistos M, Vlassopoulos D, Anastasiadis S (1996b) Determination of both the binodal and the spinodal curves in polymer blends by shear rheology EPL. Europhys Lett 34:513

    Article  Google Scholar 

  • Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317

    Article  Google Scholar 

  • López‐Rodríguez N, López‐Arraiza A, Meaurio E, Sarasua J (2006) Crystallization, morphology, and mechanical behavior of polylactide/poly (ε‐caprolactone) blends. Polym Eng Sci 46:1299–1308

    Article  Google Scholar 

  • Madbouly SA, Ougizawa T (2004) Rheological investigation of shear induced‐mixing and shear induced‐demixing for polystyrene/poly (vinyl methyl ether) blend. Macromol Chem Phys 205:1222–1230

    Article  Google Scholar 

  • Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ (2004) Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng 289:910–915

    Article  Google Scholar 

  • Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-Weeks extrapolations. Macromolecules 31(23):8219–8229

    Article  Google Scholar 

  • Meredith JC, J Amis E (2000) LCST phase separation in biodegradable polymer blends: poly (D, L‐lactide) and poly (ϵ‐caprolactone). Macromol Chem Phys 201:733–739

    Article  Google Scholar 

  • Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly (ε-caprolactone)-b-poly (ethylene glycol) block copolymers and phase morphology analysis in immiscible poly (lactide)/poly (ε-caprolactone) blends. Biomacromolecules 3:1179–1186

    Article  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  Google Scholar 

  • Newman D, Laredo E, Bello A, Grillo A, Feijoo JL, Muller AJ (2009) Molecular mobilities in biodegradable poly (DL-lactide)/poly (ε-caprolactone) blends. Macromolecules 42:5219–5225

    Article  Google Scholar 

  • Niu Y-H, Wang Z-G (2006) Rheologically determined phase diagram and dynamically investigated phase separation kinetics of polyolefin blends. Macromolecules 39:4175–4183

    Article  Google Scholar 

  • Noroozi N, Schafer LL, Hatzikiriakos SG (2012a) Thermorheological properties of poly (ε‐caprolactone)/polylactide blends. Polym Eng Sci 52:2348–2359

    Article  Google Scholar 

  • Noroozi N, Thomson JA, Noroozi N, Schafer LL, Hatzikiriakos SG (2012b) Viscoelastic behaviour and flow instabilities of biodegradable poly (ε-caprolactone) polyesters. Rheol Acta 51:179–192

    Article  Google Scholar 

  • Othman N, Acosta-Ramírez A, Mehrkhodavandi P, Dorgan JR, Hatzikiriakos SG (2011) Solution and melt viscoelastic properties of controlled microstructure poly (lactide). J Rheol (1978-present) 55:987–1005

    Article  Google Scholar 

  • Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Engineering 59:292–297

    Article  Google Scholar 

  • Petraccone V, Guerra G, De Rosa C, Tuzi A (1985) Extrapolation to the equilibrium melting temperature for isotactic polypropylene. Macromolecules 18:813–814

    Article  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  Google Scholar 

  • Righetti MC, Tombari E (2011) Crystalline, mobile amorphous and rigid amorphous fractions in poly (L-lactic acid) by TMDSC. Thermochim Acta 522:118–127

    Article  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. OUP Oxford.

  • Sakai F, Nishikawa K, Inoue Y, Yazawa K (2009) Nucleation enhancement effect in poly (l-lactide)(PLLA)/poly (ϵ-caprolactone)(PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules 42:8335–8342

    Article  Google Scholar 

  • Salehiyan R, Hyun K (2013) Effect of organoclay on non-linear rheological properties of poly (lactic acid)/poly (caprolactone) blends. Korean J Chem Eng 30:1013–1022

    Article  Google Scholar 

  • Salmerón Sánchez M, Mathot VB, Vanden Poel G, Gómez Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly (L-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997

    Article  Google Scholar 

  • Shin BY (2013) Compatibilization of immiscible poly (lactic acid)/poly (ε-caprolactone) blend through electron-beam irradiation with the addition of a compatibilizing agent. Radiat Phys Chem 83:98–104

    Article  Google Scholar 

  • Tsuburaya M, Saito H (2004) Crystallization of polycarbonate induced by spinodal decomposition in polymer blends. Polymer 45:1027–1032

    Article  Google Scholar 

  • Tuba F, Oláh L, Nagy P (2011) Characterization of reactively compatibilized poly (d, l-lactide)/poly (ε-caprolactone) biodegradable blends by essential work of fracture method. Eng Fract Mech 78:3123–3133

    Article  Google Scholar 

  • Ugartemendia JM, Muñoz ME, Sarasua JR, Santamaria A (2014) Phase behavior and effects of microstructure on viscoelastic properties of a series of polylactides and polylactide/poly (ε-caprolactone) copolymers. Rheol Acta 53:857–868

    Article  Google Scholar 

  • Vlassopoulos D, Koumoutsakos A, Anastasiadis S, Hatzikiriakos SG, Englezos P (1997) Rheology and phase separation in a model upper critical solution temperature polymer blend. J Rheol (1978-present) 41:739–755

  • Wang H et al (2002) Phase diagram of a nearly isorefractive polyolefin blend. Macromolecules 35:1072–1078

    Article  Google Scholar 

  • Wenig W, Asresahegn M (1993) The influence of rubber‐matrix interfaces on the crystallization kinetics of isotactic polypropylene blended with ethylene‐propylene‐diene terpolymer (EPDM). Polym Eng Sci 33:877–888

    Article  Google Scholar 

  • Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113

    Article  Google Scholar 

  • Wu D, Zhang Y, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly (ε-caprolactone) blend. Eur Polym J 44:2171–2183

    Article  Google Scholar 

  • Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) Viscoelastic interfacial properties of compatibilized poly (ε‐caprolactone)/polylactide blend. J Polym Sci B Polym Phys 48:756–765

    Article  Google Scholar 

  • Wu D et al (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626

    Article  Google Scholar 

  • Yang J-M, Chen H-L, You J-W, Hwang JC (1997) Miscibility and crystallization of poly (L-lactide)/poly (ethylene glycol) and poly (L-lactide)/poly (ε-caprolactone) blends. Polym J 29:657–662

    Article  Google Scholar 

  • Zhang Z, Zhang H, Yang Y, Vinckier I, Laun H (2001) Rheology and morphology of phase-separating polymer blends. Macromolecules 34:1416–1429

    Article  Google Scholar 

  • Zhang J, Tsuji H, Noda I, Ozaki Y (2004) Structural changes and crystallization dynamics of poly (L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 37:6433–6439

    Article  Google Scholar 

  • Zhang X, Wang Z, Muthukumar M, Han CC (2005) Fluctuation‐assisted crystallization: in a simultaneous phase separation and crystallization polyolefin blend system. Macromol Rapid Commun 26:1285–1288

    Article  Google Scholar 

  • Zhang X, Wang Z, Dong X, Wang D, Han CC (2006) Interplay between two phase transitions: crystallization and liquid-liquid phase separation in a polyolefin blend. J Chem Phys 125:024907

    Article  Google Scholar 

  • Zhang R, Cheng H, Zhang C, Sun T, Dong X, Han CC (2008) Phase separation mechanism of polybutadiene/polyisoprene blends under oscillatory shear flow. Macromolecules 41:6818–6829

    Article  Google Scholar 

  • Zhang R, Dong X, Wang X, Cheng H, Han CC (2009a) Nucleation/growth in the metastable and unstable phase separation regions under oscillatory shear flow for an Off-critical polymer blend. Macromolecules 42:2873–2876

    Article  Google Scholar 

  • Zhang Y, Wu D, Zhang M, Zhou W, Xu C (2009b) Effect of steady shear on the morphology of biodegradable poly ([epsilon]-caprolactone)/polylactide blend. Polym Eng Sci 49:2293

    Article  Google Scholar 

  • Zhang Y, Wang Z, Jiang F, Bai J, Wang Z (2013) Effect of miscibility on spherulitic growth rate for double-layer polymer films. Soft Matter 9:5771–5778

    Article  Google Scholar 

  • Zou F et al (2012) Shear induced phase boundary shift in the critical and off-critical regions for a polybutadiene/polyisoprene blend. Macromolecules 45:1692–1700

    Article  Google Scholar 

Download references

Acknowledgments

Financial assistance from the Natural Sciences and Engineering Research Council (NSERC) of Canada with the support from the NOVA Chemicals is gratefully acknowledged. Many thanks to Perstorp and Natureworks for kindly providing the materials for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshandeh, M., Noroozi, N., Schafer, L.L. et al. Dynamics of partially miscible polylactide-poly(ε-caprolactone) blends in the presence of cold crystallization. Rheol Acta 55, 657–671 (2016). https://doi.org/10.1007/s00397-016-0941-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0941-8

Keywords

Navigation