Skip to main content

Advertisement

Log in

Genome Analysis of Halomonas elongata Strain 153B and Insights Into Polyhydroxyalkanoate Synthesis and Adaptive Mechanisms to High Saline Environments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Species of the Halomonas genus are gram-negative, aerobic, moderately halophilic bacteria that synthesize polyhydroxyalkanoates (PHAs) and other high-value products that have a wide range of potential uses in the food, feed, cosmetics, pharmaceutical, and chemical sectors. Genome sequencing studies allow for the description and comparison of genetic traits with other strains and species, allowing for the exploration of the organism's potential, necessary to further biotechnology applications. Here, the genome of Halomonas elongata strain 153B was sequenced, its features compared to 5 other strains and 7 species, and a description of features for adaptations to hypersaline environments and bioproducts synthesis was done. Whole-genome analysis showed H. elongata 153B has more similar features to the reference strain H. elongata DSM 2581 compared to 4 other reported strains. Comparative genomics showed 2064 core genomic clusters between the strains and 666 singletons for strain 153B. Several genes in transport and signaling, osmoregulation, and oxidative stress that have roles in adaptation to environments with high osmolarity were also revealed. These appear to form an intricate network of overlapping systems carefully coordinated to bring about adaptation. H. elongata 153B genes for the synthesis of PHAs, ectoine, vitamins, and the degradation of drugs and aromatic compounds were described. The results will aid in the study of halophile physiology, provide a mine for valuable enzymes, and help speed up research for other biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The genomic sequence data in this study were deposited in the NCBI database.

Code Availability

Not applicable.

References

  1. Arahal DR, Ventosa A (2006) The family halomonadaceae. The family halomonadaceae. Springer, New York

    Chapter  Google Scholar 

  2. Daoud L, Ben Ali M (2020) Chapter 5—Halophilic microorganisms: Interesting group of extremophiles with important applications in biotechnology and environment. In: Salwan R, Sharma V (eds) Physiological and biotechnological aspects of extremophiles. Academic Press, pp 51–64

    Chapter  Google Scholar 

  3. Çakmak H, Çelik PA, Çınar S et al (2021) Levan production potentials from different hypersaline environments in Turkey. J Microbiol, Biotechnol Food Sci. https://doi.org/10.15414/jmbfs.2020.10.1.61-64

    Article  Google Scholar 

  4. Radchenkova N, Hasköylü ME, Vassilev S et al (2020) Improved exopolymer production by Chromohalobacter canadensis cultures for its potential cosmeceutical applications. Microorganisms 8:1935. https://doi.org/10.3390/microorganisms8121935

    Article  CAS  Google Scholar 

  5. Ye J-W, Chen G-Q (2021) Halomonas as a chassis. Essays Biochem 65:393–403. https://doi.org/10.1042/EBC20200159

    Article  CAS  Google Scholar 

  6. Qin Q, Ling C, Zhao Y et al (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229. https://doi.org/10.1016/j.ymben.2018.03.018

    Article  CAS  Google Scholar 

  7. Jiang X-R, Yao Z-H, Chen G-Q (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37. https://doi.org/10.1016/j.ymben.2017.09.004

    Article  CAS  Google Scholar 

  8. Ma H, Zhao Y, Huang W et al (2020) Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun 11:3313. https://doi.org/10.1038/s41467-020-17223-3

    Article  CAS  Google Scholar 

  9. Thomas T, Elain A, Bazire A, Bruzaud S (2019) Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 35:50. https://doi.org/10.1007/s11274-019-2627-8

    Article  CAS  Google Scholar 

  10. Mukherjee S, Stamatis D, Bertsch J et al (2019) Genomes OnLine database (GOLD) vol 7: updates and new features. Nucleic Acids Res 47:D649–D659. https://doi.org/10.1093/nar/gky977

    Article  CAS  Google Scholar 

  11. Ye J, Hu D, Che X et al (2018) Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 47:143–152. https://doi.org/10.1016/j.ymben.2018.03.013

    Article  CAS  Google Scholar 

  12. Enuh BM, Nural Yaman B, Tarzi C et al (2022) Whole-genome sequencing and genomescale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use. MicrobiologyOpen. 11:e1328. https://doi.org/10.1002/mbo3.1328

  13. Çınar S, Mutlu MB (2016) Comparative analysis of prokaryotic diversity in solar salterns in eastern Anatolia (Turkey). Extremophiles 20:589–601. https://doi.org/10.1007/s00792-016-0845-7

    Article  Google Scholar 

  14. Gedikli S, Aytar Çelik P, Demirbilek M et al (2019) Experimental exploration of thermostable poly (β-hydroxybutyrates) by Geobacillus kaustophilus using Box-Behnken design. J Polym Environ. https://doi.org/10.1007/s10924-018-1335-z

    Article  Google Scholar 

  15. Wattam AR, Brettin T, Davis JJ et al (2018) Assembly, annotation, and comparative genomics in PATRIC, the all bacterial bioinformatics resource center. Methods Mol Biol 1704:79–101. https://doi.org/10.1007/978-1-4939-7463-4_4

    Article  CAS  Google Scholar 

  16. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  Google Scholar 

  17. Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  Google Scholar 

  18. Boutet E, Lieberherr D, Tognolli M et al (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112. https://doi.org/10.1007/978-1-59745-535-0_4

    Article  CAS  Google Scholar 

  19. Moriya Y, Itoh M, Okuda S et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. https://doi.org/10.1093/nar/gkm321

    Article  Google Scholar 

  20. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  Google Scholar 

  21. Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085

    Article  CAS  Google Scholar 

  22. Stothard P, Grant JR, Van Domselaar G (2019) Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform 20:1576–1582. https://doi.org/10.1093/bib/bbx081

    Article  CAS  Google Scholar 

  23. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. https://doi.org/10.1186/1471-2164-12-402

    Article  CAS  Google Scholar 

  24. Xu L, Dong Z, Fang L et al (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47:W52–W58. https://doi.org/10.1093/nar/gkz333

    Article  CAS  Google Scholar 

  25. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  28. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, New York

    Google Scholar 

  29. Wang Q, Nie P, Hou Y, Wang Y (2020) Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp ANT108. Protein Expr Purif 173:105661. https://doi.org/10.1016/j.pep.2020.105661

    Article  CAS  Google Scholar 

  30. Diken E, Ozer T, Arikan M et al (2015) Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. Springerplus 4:393. https://doi.org/10.1186/s40064-015-1184-3

    Article  CAS  Google Scholar 

  31. Alm E, Huang K, Arkin A (2006) The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol 2:e143. https://doi.org/10.1371/journal.pcbi.0020143

    Article  CAS  Google Scholar 

  32. Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol. https://doi.org/10.1128/JB.184.11.3078-3085.2002

    Article  Google Scholar 

  33. Poli A, Nicolaus B, Denizci AA et al (2013) Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 63:10–18. https://doi.org/10.1099/ijs.0.037036-0

    Article  Google Scholar 

  34. Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42:353–375. https://doi.org/10.1093/femsre/fuy009

    Article  CAS  Google Scholar 

  35. Kraegeloh A, Amendt B, Kunte HJ (2005) Potassium transport in a halophilic member of the bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T. J Bacteriol 187:1036–1043. https://doi.org/10.1128/JB.187.3.1036-1043.2005

    Article  CAS  Google Scholar 

  36. Chen Y-H, Lu C-W, Shyu Y-T, Lin S-S (2017) Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches. Sci Rep 7:13037. https://doi.org/10.1038/s41598-017-13450-9

    Article  CAS  Google Scholar 

  37. Chen Y-H, Shyu Y-T, Lin S-S (2018) Characterization of candidate genes involved in halotolerance using high-throughput omics in the halotolerant bacterium Virgibacillus chiguensis. PLoS ONE 13:e0201346. https://doi.org/10.1371/journal.pone.0201346

    Article  CAS  Google Scholar 

  38. Ongagna-Yhombi SY, McDonald ND, Boyd EF (2015) Deciphering the role of multiple betaine-carnitine-choline transporters in the halophile Vibrio parahaemolyticus. Appl Environ Microbiol 81:351–363. https://doi.org/10.1128/AEM.02402-14

    Article  CAS  Google Scholar 

  39. Cummings SP, Gilmour DJ (1995) The effect of NaCl on the growth of a halomonas species: accumulation and utilization of compatible solutes. Microbiology 141:1413–1418. https://doi.org/10.1099/13500872-141-6-1413

    Article  CAS  Google Scholar 

  40. Nakayama H, Yoshida K, Ono H et al (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239–1247. https://doi.org/10.1104/pp.122.4.1239

    Article  CAS  Google Scholar 

  41. Calamita G (2000) The Escherichia coli aquaporin-Z water channel. Mol Microbiol 37:254–262. https://doi.org/10.1046/j.1365-2958.2000.02016.x

    Article  CAS  Google Scholar 

  42. Lang S, Cressatti M, Mendoza KE et al (2015) YehZYXW of Escherichia coli Is a low-affinity, non-osmoregulatory betaine-specific ABC transporter. Biochemistry 54:5735–5747. https://doi.org/10.1021/acs.biochem.5b00274

    Article  CAS  Google Scholar 

  43. Gostinčar C, Gunde-Cimerman N (2018) Overview of oxidative stress response genes in selected halophilic fungi. Genes (Basel) 9:E143. https://doi.org/10.3390/genes9030143

    Article  CAS  Google Scholar 

  44. Sztukowska M, Bugno M, Potempa J et al (2002) Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol 44:479–488. https://doi.org/10.1046/j.1365-2958.2002.02892.x

    Article  CAS  Google Scholar 

  45. Zheng Y, Chen J-C, Ma Y-M, Chen G-Q (2020) Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab Eng 58:82–93. https://doi.org/10.1016/j.ymben.2019.07.004

    Article  CAS  Google Scholar 

  46. Chek MF, Kim S-Y, Mori T et al (2017) Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp USM2, producing biodegradable plastics. Sci Rep 7:5312. https://doi.org/10.1038/s41598-017-05509-4

    Article  CAS  Google Scholar 

  47. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243. https://doi.org/10.1128/JB.183.14.4235-4243.2001

    Article  CAS  Google Scholar 

  48. Velázquez-Sánchez C, Espín G, Peña C, Segura D (2020) The modification of regulatory circuits involved in the control of polyhydroxyalkanoates metabolism to improve their production. Front Bioeng Biotechnol 8:386. https://doi.org/10.3389/fbioe.2020.00386

    Article  Google Scholar 

  49. Choi MH, Xu J, Gutierrez M et al (2011) Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 13C NMR analysis of the products in wild-type and mutants. J Biotechnol 151:30–42. https://doi.org/10.1016/j.jbiotec.2010.10.072

    Article  CAS  Google Scholar 

  50. Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7. https://doi.org/10.1016/j.femsle.2004.06.029

    Article  CAS  Google Scholar 

  51. de Moreno ML, Sánchez-Porro C, Piubeli F et al (2011) Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans. PLoS ONE 6:e21049. https://doi.org/10.1371/journal.pone.0021049

    Article  CAS  Google Scholar 

  52. Neifar M, Chouchane H, Najjari A et al (2019) Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. Genomics 111:1802–1814. https://doi.org/10.1016/j.ygeno.2018.12.003

    Article  CAS  Google Scholar 

  53. Wells T, Ragauskas AJ (2012) Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 30:627–637. https://doi.org/10.1016/j.tibtech.2012.09.008

    Article  CAS  Google Scholar 

  54. Grund E, Denecke B, Eichenlaub R (1992) Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol 58:1874–1877. https://doi.org/10.1128/aem.58.6.1874-1877.1992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is based partly on the Ph.D. thesis of BM. Enuh. Besides, we thank Prof. Mutlu for providing the strain.

Funding

This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under grant number FDK-2022-2468.

Author information

Authors and Affiliations

Authors

Contributions

PAÇ and EBM developed and designed the study, EBM did the literature search and experiments and analysis, PAÇ revised the work critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pınar Aytar Çelik.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enuh, B.M., Aytar Çelik, P. Genome Analysis of Halomonas elongata Strain 153B and Insights Into Polyhydroxyalkanoate Synthesis and Adaptive Mechanisms to High Saline Environments. Curr Microbiol 80, 18 (2023). https://doi.org/10.1007/s00284-022-03115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03115-w

Navigation