Skip to main content
Log in

Mechanistic Understanding of Gordonia sp. in Biodesulfurization of Organosulfur Compounds

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Although conventional oil refining process like hydrodesulfurization (HDS) is capable of removing sulfur compounds present in crude oil, it cannot desulfurize recalcitrant organosulfur compounds such as dibenzothiophenes (DBTs), benzothiophenes (BTs), etc. Biodesulfurization (BDS) is a process of selective removal of sulfur moieties from DBT or BT by desulfurizing microbes. Therefore, BDS can be used as a complementary and economically feasible technology to achieve deep desulfurization of crude oil without affecting the calorific value. In the recent past, members of biodesulfurizing actinomycete genus Gordonia, isolated from versatile environments like soil, activated sludge, human beings etc. have been greatly exploited in the field of petroleum refining technology. The bacterium Gordonia sp. is slightly acid-fast and has been used for unconventional but potential oil refining processes like BDS in petroleum refineries. Gordonia sp. is unique in a way, that it can desulfurize both aliphatic and aromatic organosulfurs without affecting the calorific value of hydrocarbon molecules. Till date, approximately six different species and nineteen strains of the genus Gordonia have been recognized for BDS activity. Various factors such as enzyme specificity, availability of essential cofactors, feedback inhibition, toxicity of organic pollutants and the oil–water separations limit the desulfurization rate of microbial biocatalyst and influence its commercial applications. The current review selectively highlights the role of this versatile genus in removing sulfur from fossil fuels, mechanisms and future prospects on sustainable environment friendly technologies for crude oil refining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The original data compiled for the article will be maintained by the corresponding author.

References

  1. Blumberg KO, Walsh MP, Pera C (2003) Low-sulfur gasoline and diesel: the key to lower vehicle emission. In: Prepared for the May 30, 2003 meeting in Napa, California, of the International Council on Clean Transportation (ICCT). https://theicct.org/sites/default/files/publications/Low-Sulfur_ICCT_2003.pdf. Accessed May 30, 2003.

  2. Kilbane JJ, Le Borgne S (2004) Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals. Stud Surf Sci Catal 151:29–65. https://doi.org/10.1016/S0167-2991(04)80143-5

    Article  CAS  Google Scholar 

  3. Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14(9):398–405. https://doi.org/10.1016/j.tim.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Drzyzga O (2012) The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 38:300–316. https://doi.org/10.3109/1040841X.2012.668134

    Article  CAS  PubMed  Google Scholar 

  5. Vidal C, Padilla E, Alcacer P, Campos E, Prieto F, Santos C (2014) Breast abscess caused by Gordonia bronchialis and the use of 16S rRNA gene sequence analysis for its definitive identification. JMM Case Rep. https://doi.org/10.1099/jmmcr.0.001248

    Article  Google Scholar 

  6. Sowani H, Kulkarni M, Zinjarde S (2018) An insight into the ecology, diversity and adaptations of Gordonia species. Crit Rev Microbiol 44(4):393–413. https://doi.org/10.1080/1040841X.2017.1418286

    Article  CAS  PubMed  Google Scholar 

  7. Mikolasch A, Omirbekova A, Schumann P, Reinhard A, Sheikhany H, Berzhanova R, Mukasheva T, Schauer F (2015) Enrichment of aliphatic, alicyclic and aromatic acids by oil degrading bacteria isolated from the rhizosphere of plants growing in oil contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 99:4071–4084. https://doi.org/10.1007/s00253-014-6320-4

    Article  CAS  PubMed  Google Scholar 

  8. Hao DH, Lin JQ, Song X, Lin JQ, Su YJ, Qu YB (2008) Isolation, identification, and performance studies of a novel paraffindegrading bacterium of Gordonia amicalis LH3. Biotechnol Bioproc E 13:61–68. https://doi.org/10.1007/s12257-007-0168-8

    Article  CAS  Google Scholar 

  9. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50(6):2031–2036. https://doi.org/10.1099/00207713-50-6-2031

    Article  CAS  PubMed  Google Scholar 

  10. Mohebali G, Ball AS, Kaytash A, Rasekh B (2007) Stabilization of water/gas oil emulsions by desulfurizing cells of Gordonia alkanivorans RIPI90A. Microbiology 153:1573–1581. https://doi.org/10.1099/mic.0.2006/002543-0

    Article  CAS  PubMed  Google Scholar 

  11. Mohebali G, Ball AS, Kaytash A, Rasekh B (2008) Dimethyl sulfoxide (DMSO) as the sulfur source for the production of desulfurizing resting cells of Gordonia alkanivorans RIPI90A. Microbiology 154:878–885. https://doi.org/10.1099/mic.0.2007/013011-0

    Article  CAS  PubMed  Google Scholar 

  12. Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K (2009) Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour Technol 100:475–479. https://doi.org/10.1016/j.biortech.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  13. Shavandi M, Sadeghizadeh M, Khajeh K, Mohebali G, Zomorodipour A (2010) Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A. Appl Microbiol Biotechnol 87:1455–1461. https://doi.org/10.1007/s00253-010-2605-4

    Article  CAS  PubMed  Google Scholar 

  14. Alves L, Salgueiro R, Rodrigues C, Mesquita E, Matos J, Gírio FM (2005) Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotech 120:199–208. https://doi.org/10.1385/ABAB:120:3:199

    Article  CAS  Google Scholar 

  15. Alves L, Marques S, Matos J, Tenreiro R, Gírio FM (2008) Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere 70:967–973. https://doi.org/10.1016/j.chemosphere.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  16. Alves L, Matos J, Tenreiro R, Gírio FM (2008) Evidence for the role of zinc on the performance of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B. J Ind Microbiol Biotechnol 35:69–73. https://doi.org/10.1007/s10295-007-0278-5

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Jin D, Zhou L, Wu L, An W, Zhao L (2014) Draft genome sequence of Gordonia alkanivorans strain CGMCC6845, a halotolerant hydrocarbon degrading bacterium. Genome Announc 2:e01274-e1313. https://doi.org/10.1128/genomeA.01274-13

    Article  PubMed  PubMed Central  Google Scholar 

  18. Santos SC, Alviano DS, Alviano CS, Pádula M, Leitão AC, Martins OB, Ribeiro CM, Sassaki MY, Matta CP, Bevilaqua J, Sebastián GV, Seldin L (2006) Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362. https://doi.org/10.1007/s00253-005-0154-z

    Article  CAS  PubMed  Google Scholar 

  19. Kilbane JJ, Robbins J (2007) Characterization of the dszABC genes of Gordonia amicalis F. 5.25.8 and identification of conserved protein and DNA sequences. Appl Microbiol Biotechnol 75(4):843–851. https://doi.org/10.1007/s00253-007-0895-y

    Article  CAS  PubMed  Google Scholar 

  20. Delegan YA, Valentovich LN, Shafieva SM, Ganbarov KG, Filonov AE, Vainstein MB (2019) Characterization and genomic analysis of highly efficient thermotolerant oil-degrading bacterium Gordonia sp 1D. Folia Microbiol 64(1):41–48. https://doi.org/10.1007/s12223-018-0623-2

    Article  CAS  Google Scholar 

  21. Kim SB, Brown R, Oldfeld C, Gilbert SC, Goodfellow M (1999) Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. Int J Syst Bacteriol 49:1845–1851. https://doi.org/10.1099/00207713-49-4-1845

    Article  CAS  PubMed  Google Scholar 

  22. Chang JH, Kim YJ, Lee BH, Cho KS, Ryu HW, Chang YK, Chang HN (2001) Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol Prog 17:876–880. https://doi.org/10.1021/bp0100676

    Article  CAS  PubMed  Google Scholar 

  23. Lee IS, Bae HS, Ryu HW, Cho KS, Chang YK (2005) Biocatalyticndesulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 cells. Biotechnol Prog 21:781–785. https://doi.org/10.1021/bp0496171

    Article  CAS  PubMed  Google Scholar 

  24. Matsui T, Onaka T, Maruhashi K, Kurane R (2001) Benzo[b]thiophene desulfurization by Gordonia rubropertinctus strain T08. Appl Microbiol Biotechnol 57:212–215. https://doi.org/10.1007/s002530100735

    Article  CAS  PubMed  Google Scholar 

  25. Acero J, Berdugo C, Mogollón L (2003) Biodesulfurization process evaluation with a Gordona rubropertinctus strain. CT F-Cienc Tecn Fut 2(4):43–54

    CAS  Google Scholar 

  26. Wang W, Ma T, Lian K, Zhang Y, Tian H, Ji K, Li G (2013) Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6. PLoS ONE 8:e84386. https://doi.org/10.1371/journal.pone.0084386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144(9):2545–2553. https://doi.org/10.1099/00221287-144-9-2545

    Article  CAS  PubMed  Google Scholar 

  28. Li GQ, Li SS, Qu SW, Liu QK, Ma T, Zhu L, Liang FL, Liu RL (2008) Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30:1759–1764. https://doi.org/10.1007/s10529-008-9748-8

    Article  CAS  PubMed  Google Scholar 

  29. Rhee SK, Chang JH, Chang YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331. https://doi.org/10.1128/AEM.64.6.2327-2331.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsui T, Maruhashi K (2004) Isolation of carotenoid-defcient mutant from alkylated dibenzothiophene desulfurizing nocardioform bacteria, Gordonia sp. TM414. Curr Microbiol 48:130–134. https://doi.org/10.1007/s00284-003-4141-2

    Article  CAS  PubMed  Google Scholar 

  31. Li W, Wang MD, Chen H, Chen JM, Shi Y (2006) Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28:1175–1179. https://doi.org/10.1007/s10529-006-9070-2

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad A, Chauhan AK, Javed S, Kumar A (2014) Desulfurization of thianthrene by a Gordonia sp. IITR100. Biotechnol Lett 36(11):2209–2214. https://doi.org/10.1007/s10529-014-1606-2

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad A, Chauhan AK, Kushwaha HN, Javed S, Kumar A (2015) Preferential desulfurization of dibenzyl sulfide by an isolated Gordonia sp. IITR100. 3 Biotech 5(3):237–243. https://doi.org/10.1007/s13205-014-0221-1

    Article  PubMed  Google Scholar 

  34. Chauhan AK, Ahmad A, Singh SP, Kumar A (2015) Biodesulfurization of benzonaphthothiophene by an isolated Gordonia sp. IITR100. Int Biodeterior Biodegr 104:105–111. https://doi.org/10.1016/j.ibiod.2015.05.024

    Article  CAS  Google Scholar 

  35. Adlakha J, Singh P, Ram SK, Kumar M, Singh MP, Singh D, Srivastava P (2016) Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp. IITR100. Fuel 184:761–769. https://doi.org/10.1016/j.fuel.2016.07.021

    Article  CAS  Google Scholar 

  36. Feng S, Yang H, Zhan X, Wang W (2016) Enhancement of dibenzothiophene biodesulfurization by weakening the feedback inhibition effects based on a systematic understanding of the biodesulfurization mechanism by Gordonia sp. through the potential “4S” pathway. RSC Adv 6(86):82872–82881. https://doi.org/10.1039/C6RA14459D

    Article  CAS  Google Scholar 

  37. Aminsefat A, Rasekh B, Ardakani MR (2012) Biodesulfurization of dibenzothiophene by Gordonia sp. AHV-01 and optimization by using of response surface design procedure. Microbiology 81(2):154–159. https://doi.org/10.1134/S0026261712020026

    Article  CAS  Google Scholar 

  38. Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70(6):3195–3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andalibi F, Fatahi-Bafghi M (2017) Gordonia: isolation and identification in clinical samples and role in biotechnology. Folia Microbiol 62(3):245–252. https://doi.org/10.1007/s12223-017-0491-1

    Article  CAS  Google Scholar 

  40. Sowani H, Kulkarni M, Zinjarde S (2019) Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol Adv 37(3):382–402

    Article  CAS  Google Scholar 

  41. Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal 41(1–2):207–238. https://doi.org/10.1016/S0926-3373(02)00212-6

    Article  CAS  Google Scholar 

  42. Srivastava VC (2012) An evaluation of desulfurization technologies for sulfur removal from liquid fuels. Rsc Adv 2(3):759–783. https://doi.org/10.1039/C1RA00309G

    Article  Google Scholar 

  43. Aggarwal S, Karimi IA, Ivan GR (2013) In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Mol BioSyst 9(10):2530–2540. https://doi.org/10.1039/C3MB70132H

    Article  CAS  PubMed  Google Scholar 

  44. Alves L, Paixão SM, Pacheco R, Ferreira AF, Silva CM (2015) Biodesulphurization of fossil fuels: energy, emissions and cost analysis. RSC Adv 5(43):34047–34057. https://doi.org/10.1039/C4RA14216K

    Article  CAS  Google Scholar 

  45. Paixão SM, Arez BF, Roseiro JC, Alves L (2016) Simultaneously saccharification and fermentation approach as a tool for enhanced fossil fuels biodesulfurization. J Environ Manag 182:397–405. https://doi.org/10.1016/j.jenvman.2016.07.099

    Article  CAS  Google Scholar 

  46. Agarwal M, Dikshit PK, Bhasarkar JB, Borah AJ, Moholkar VS (2016) Physical insight into ultrasound-assisted biodesulfurization using free and immobilized cells of Rhodococcus rhodochrous MTCC 3552. Chem Eng J 295:254–267. https://doi.org/10.1016/j.cej.2016.03.042

    Article  CAS  Google Scholar 

  47. Bhatia S, Sharma DK (2012) Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res 19(8):3491–3497. https://doi.org/10.1007/s11356-012-0884-2

    Article  CAS  Google Scholar 

  48. Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82(6):607–631. https://doi.org/10.1016/S0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  49. Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81(2):155–169. https://doi.org/10.1016/S0378-3820(03)00007-9

    Article  CAS  Google Scholar 

  50. Bhasarkar JB, Chakma S, Moholkar VS (2013) Mechanistic features of oxidative desulfurization using sono-Fenton–peracetic acid (ultrasound/Fe2+–CH3COOH–H2O2) system. Ind Eng Chem Res 52(26):9038–9047. https://doi.org/10.1021/ie400879j

    Article  CAS  Google Scholar 

  51. Sadare OO, Obazu F, Daramola MO (2017) Biodesulfurization of petroleum distillates-current status, opportunities and future challenges. Environments 4(4):85. https://doi.org/10.3390/environments4040085

    Article  Google Scholar 

  52. Campos-Martin JM, Capel-Sanchez MDC, Perez-Presas P, Fierro JLG (2010) Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechnol 85(7):879–890. https://doi.org/10.1002/jctb.2371

    Article  CAS  Google Scholar 

  53. Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66(4):356–366. https://doi.org/10.1007/s00253-004-1755-7

    Article  CAS  PubMed  Google Scholar 

  54. Bhasarkar JB, Dikshit PK, Moholkar VS (2015) Ultrasound assisted biodesulfurization of liquid fuel using free and immobilized cells of Rhodococcus rhodochrous MTCC 3552: a mechanistic investigation. Bioresour Technol 187:369–378. https://doi.org/10.1016/j.biortech.2015.03.102

    Article  CAS  PubMed  Google Scholar 

  55. Kodama K, Nakatini S, Umehara K, Shimizu K, Minoda Y, Yamada K (1970) Microbial conversion of petro-sulfur compounds. Part III. Isolation and identification of products from dibenzothiophene. Agric Biol Chem 34:1320–1324. https://doi.org/10.1271/bbb1961.34.1320

    Article  CAS  Google Scholar 

  56. Kilbane JJ (1989) Desulfurization of coal: the microbial solution. Trends Biotechnol 7:97–101. https://doi.org/10.1016/0167-7799(89)90007-3

    Article  CAS  Google Scholar 

  57. Kilbane JJ (2017) Biodesulfurization: how to make it work? Arab J Sci Eng 42(1):1–9. https://doi.org/10.1007/s13369-016-2269-1

    Article  CAS  Google Scholar 

  58. Mohebali G, Ball AS (2016) Biodesulfurization of diesel fuels–past, present and future perspectives. Int Biodeterior Biodegr 110:163–180. https://doi.org/10.1016/j.ibiod.2016.03.011

    Article  CAS  Google Scholar 

  59. Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Policy 17(1):29–37. https://doi.org/10.1007/s10098-014-0812-x

    Article  Google Scholar 

  60. Galan B, Diaz E, García JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2(6):687–694. https://doi.org/10.1046/j.1462-2920.2000.00151.x

    Article  CAS  PubMed  Google Scholar 

  61. Raheb J, Memari B, Hajipour MJ (2011) Gene-manipulated desulfurizing strain Pseudomonas putida reduced energy consuming in the biodesulfurization process. Energy Sour A 33(21):2018–2026. https://doi.org/10.1080/15567030903515054

    Article  CAS  Google Scholar 

  62. Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, Al-Hawari J, Grossman MJ, Sankey BM, Lau PC (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci. Appl Environ Microbiol 63(7):2915–2919

    Article  CAS  Google Scholar 

  63. Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzyme Microb Technol 32(3–4):446–454. https://doi.org/10.1016/S0141-0229(02)00320-4

    Article  CAS  Google Scholar 

  64. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596. https://doi.org/10.1016/j.biotechadv.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  65. Chauhan AK, Singh SP, Kumar A (2014) Cloning, sequencing and characterization of the ‘desulfurization gene cluster’ from an isolated strain Gordonia sp. IITR100. Cloning. https://doi.org/10.5296/jab.v2i2.6027

    Article  Google Scholar 

  66. Tsukamura M (1971) Proposal of a new genus, Gordonia, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. Microbiology 68(1):15–26. https://doi.org/10.1099/00221287-68-1-15

    Article  CAS  Google Scholar 

  67. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Evol Microbiol 7(2):479–491. https://doi.org/10.1099/00207713-47-2-479

    Article  Google Scholar 

  68. Nishiuchi Y, Baba T, Yano I (2000) Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Method 40(1):1–9. https://doi.org/10.1016/S0167-7012(99)00116-5

    Article  CAS  Google Scholar 

  69. Goodfellow M, Maldonado LA (2006) The families Dietziaceae, Gordoniaceae, Nocardiaceae and Tsukamurellaceae. In: Dworkin F, Falkow S, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, NewYork, Berlin, Heidelberg, pp 843–888

    Chapter  Google Scholar 

  70. Kummer C, Schumann P, Stackebrandt E (1999) Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Evol Microbiol 49:1513–1522. https://doi.org/10.1099/00207713-49-4-1513

    Article  CAS  Google Scholar 

  71. Xue Y, Sun X, Zhou P, Liu R, Liang F, Ma Y (2003) Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int J Syst Evol Microbiol 53(5):1643–1646. https://doi.org/10.1099/ijs.0.02605-0

    Article  CAS  PubMed  Google Scholar 

  72. Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM (2002) Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int J Syst Evol Microbiol 52(4):1133–1139. https://doi.org/10.1099/00207713-52-4-1133

    Article  CAS  PubMed  Google Scholar 

  73. Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM (1999) Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Evol Microbiol 49(4):1785–1791. https://doi.org/10.1099/00207713-49-4-1785

    Article  CAS  Google Scholar 

  74. Brust JC, Whittier S, Scully BE, McGregor CC, Yin MT (2009) Five cases of bacteraemia due to Gordonia species. J Med Microbiol 58(10):1376. https://doi.org/10.1099/jmm.0.010272-0

    Article  PubMed  PubMed Central  Google Scholar 

  75. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549. https://doi.org/10.1128/MMBR.67.4.503-549.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Annu Rev Microbiol 39:371–389. https://doi.org/10.1146/annurev.mi.39.100185.002103

    Article  CAS  PubMed  Google Scholar 

  77. Jaishankar J, Singh P, Srivastava P (2017) Draft genome sequence of a biodesulfurizing bacterium, Gordonia sp. strain IITR100. Genome Announc 5(17):e00230-17. https://doi.org/10.1128/genomeA.00230-17

    Article  PubMed  PubMed Central  Google Scholar 

  78. Alves L, Paixão SM (2014) Fructophilic behavior of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process. New Biotechnol 31(1):73–79. https://doi.org/10.1016/j.nbt.2013.08.007

    Article  CAS  Google Scholar 

  79. Akhtar N, Akhtar K, Ghauri MA (2018) Biodesulfurization of thiophenic compounds by a 2-hydroxybiphenyl-resistant Gordonia sp. HS126–4N carrying dszABC genes. Curr Microbiol 75(5):597–603. https://doi.org/10.1007/s00284-017-1422-8

    Article  CAS  PubMed  Google Scholar 

  80. Choudhary TV, Parrott S, Johnson B (2008) Unraveling heavy oil desulfurization chemistry: targeting clean fuels. Environ Sci Technol 42:1944–1947. https://doi.org/10.1021/es0720309

    Article  CAS  PubMed  Google Scholar 

  81. Arenskötter M, Baumeister D, Kalscheuer R, Steinbüchel A (2003) Identification and application of plasmids suitable for transfer of foreign DNA to members of the genus Gordonia. Appl Environ Microbiol 69(8):4971–4974. https://doi.org/10.1128/AEM.69.8.4971-4974.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh P, Srivastava P (2013) An improved protocol for electroporation in members of the genus Gordonia. J Microbiol Methods 95(2):114–116. https://doi.org/10.1016/j.mimet.2013.07.025

    Article  CAS  PubMed  Google Scholar 

  83. Alves L, Melo M, Mendonça D, Simoes F, Matos J, Tenreiro R, Girio FM (2007) Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfone desulfurization from Gordonia alkanivorans strain 1B. Enzyme Microb Technol 40(6):1598–1603. https://doi.org/10.1016/j.enzmictec.2006.11.008

    Article  CAS  Google Scholar 

  84. Singh P, Chachan S, Singhi D, Srivastava P (2016) Isolation and molecular characterization of a stationary phase promoter useful for gene expression in Gordonia. Gene 591(1):153–160. https://doi.org/10.1016/j.gene.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  85. Domingos DF, Dellagnezze BM, Greenfield P, Reyes LR, Melo IS, Midgley DJ, Oliveira VM (2013) Draft genome sequence of the biosurfactant-producing bacterium Gordonia amicalis strain CCMA-559, isolated from petroleum impacted sediment. Genome Announc. https://doi.org/10.1128/genomeA.00894-13

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang W, Ma T, Ren Y, Li G (2013) Draft Genome sequence of a benzothiophene-desulfurizing bacterium, Gordona terrae strain C-6. Genome Announc. https://doi.org/10.1128/genomeA.00381-13

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bhatia S, Sharma DK (2010) Mining of genomic databases to identify novel biodesulfurizing microorganisms. J Ind Microbiol Biotechnol 37(4):425–429. https://doi.org/10.1007/s10295-010-0697-6

    Article  CAS  PubMed  Google Scholar 

  88. Ma T (2010) The desulfurization pathway in Rhodococcus. Biology of Rhodococcus. Springer, Berlin, Heidelberg, pp 207–230. https://doi.org/10.1007/978-3-642-12937-7_8

    Chapter  Google Scholar 

  89. Foght JM (2004) Whole-cell bio-processing of aromatic compounds in crude oil and fuels. Studies in surface science and catalysis, vol 151. Elsevier, Amsterdam, pp 145–175. https://doi.org/10.1016/S0167-2991(04)80146-0

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of Science and Technology (DST), New Delhi, Govt. of India for financial support for this work under the grant YSS/2015/001541/LS. We thank Director, CMER&TI, Central Silk Board for consistent support and valuable guidance.

Author information

Authors and Affiliations

Authors

Contributions

The authors have made the following declaration about their contributions. Conceptualization: MK and GS; literature compilation and writing of the manuscript: MK and GS; Data curation, figures and tables preparation: MK and GS; Drafting and correction of the work: MC and DKJ; Edited and finalized the manuscript: GS.

Corresponding author

Correspondence to Gangavarapu Subrahmanyam.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical Approval

The work involves no plant, animal and human experiments. All prevailing local, national and international regulations and conventions and normal scientific ethical practices have also been respected.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, M., Chutia, M., Jha, D.K. et al. Mechanistic Understanding of Gordonia sp. in Biodesulfurization of Organosulfur Compounds. Curr Microbiol 79, 82 (2022). https://doi.org/10.1007/s00284-022-02770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02770-3

Navigation