Skip to main content
Log in

Biodesulfurization: a mini review about the immediate search for the future technology

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A major concern among the environmental agencies includes the emission of sulfurous gas into the environment. Consequently, the oil agencies are in constant search of alternative processes aiming the reduction of sulfur content in fuels. One of the technologies commonly used is the hydrodesulfurization (HDS), but this is a high-cost process that also requires high temperature and pressure. A complementary alternative to HDS is biodesulfurization (BDS) involving the use of specific microorganisms to the removal of sulfur present in the carbon chain, using the oxidation pathway “4S”, in which there is cleavage of carbon–sulfur bond, and maintaining the calorific value of the organic molecule. The BDS is a low-cost technique when compared with HDS. For this process to occur, activation of specific enzymes is needed, which is controlled by dszABC genes. Therefore, strategies to optimize this process have been of great importance to the oil refineries. For decades, attempts to try to implement BDS in the industry have been made, but difficulties in obtaining satisfactory results led the researchers to seek new knowledge about this bioprocess. The need of more studies concerning implementation on an industrial scale of this process is evident, since this biotechnology is a promising alternative to refineries in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multicriteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzyme Microb Technol 32:446–454

    Article  CAS  Google Scholar 

  • Abin-Fuentes A, Mohamed MS, Wang DI, Prather KL (2013) Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Appl Environ Microbiol 79(24):7970–7987

    Article  Google Scholar 

  • Aggarwal S, Karimi IA, Kilbane li JJ, Lee DY (2012) Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis. Mol BioSyst 8(10):2724–2732

    Article  CAS  Google Scholar 

  • Alves L, Paixão SM (2011) Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Bioresour Technol 102:9162–9166

    Article  CAS  Google Scholar 

  • Alves L, Paixão SM (2014a) Enhancement of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using sugar beet molasses as alternative carbon source. Appl Biochem and Biotechnol. doi:10.1007/s12010-014-0763-z

    Google Scholar 

  • Alves L, Paixão SM (2014b) Fructophilic behavior of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process. N Biotechnol 31(1):73–79

    Article  CAS  Google Scholar 

  • Alves L, Mesquita E, Gírio FM (1999) Dessulfurização bacteriana de combustíveis fósseis. Bol de biotecnol INETI Lisboa 62:3–8

    Google Scholar 

  • Alves L, Melo M, Mendonça D, Simões F, Matos J, Tenreiro R, Gírio FM (2006) Sequencing, cloning and expression of the dsz genes required for dibenzotiophene sulfone desulfurization from Gordonia alkanivorans strain 1B. Enzyme Microb Technol 40(6):1598–1603

    Article  Google Scholar 

  • Alves L, Gírio FM, Alviano CS, Seldin L (2008) Enzimas para dessulfurização de combustíveis fósseis. Enzimas em biotecnol: produção, aplicações e mercado 18:407–427

    Google Scholar 

  • Amin GA (2011) Integrated two-stage process for biodesulfurization of model oil by vertical rotating immobilized cell reactor with the bacterium Rhodococcus erythropolis. J Pet Environ Biotechnol 2:107. doi:10.4172/2157-7463.1000107

    Google Scholar 

  • Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGTS8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102:1505–1512

    Article  CAS  Google Scholar 

  • Babich IV, Moulijin JA (2003) Science and technology of novel process for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Chowdhury R, Bhattacharjee C, Pan S (2013) Simultaneous production of biosurfactant and ULSD (ultra low sulfur diesel) using Rhodococcus sp. in a chemostat. Fuel 113:107–112

    Article  CAS  Google Scholar 

  • Bhatia S, Sharma DK (2010) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50(3):104–109

    Article  CAS  Google Scholar 

  • Bhatia S, Sharma DK (2012) Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res 19:3491–3497

    Article  CAS  Google Scholar 

  • Boniek D, Figueiredo D, Pylro VS, Duarte GF (2010) Characterization of bacterial strains capable of desulphurisation in soil and sediment samples from Antarctica. Extremophiles 14(5):475–481

    Article  CAS  Google Scholar 

  • Caro A, Boltes K, Letón P, García-Calvo E (2007) Dibenzotiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35:191–197

    Article  CAS  Google Scholar 

  • Chen H, Zhang WJ, Cai YB, Zhang Y, Li W (2008) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresour Technol 99:6928–6933

    Article  CAS  Google Scholar 

  • Chen H, Cai Y-B, Zhang W-J, Li W (2009) Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp. Bioresour Technol 100:2085–2087

    Article  CAS  Google Scholar 

  • CONAMA (2012) Conselho Nacional do Meio Ambiente http://www.mma.gov.br/port/conama/index.cfm. Accessed 08 Apr 2013

  • Davoodi-Dehaghani F, Vosoughi M, Ziaee AA (2010) Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour Technol 101:1102–1105

    Article  CAS  Google Scholar 

  • Denis-Larose C, Labbé D, Bergeron H, Jones AM, Greer CW, Al-Hawari J, Grossman MJ, Sankey BM, Lau PCK (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several Rhodococci. Appl Environ Microbiol 63:2915–2919

    CAS  Google Scholar 

  • Denome SA, Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59:2837–2843

    CAS  Google Scholar 

  • Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6706–6716

    Google Scholar 

  • Derikvand P, Etemadifar Z, Biria D (2014) Taguchi optimization of dibenzothiophene biodesulfurization by Rhodococcus erythropolis R1 immobilized cells in a biphasic system. Int Biodeterior Biodegrad 86:343–348

    Article  CAS  Google Scholar 

  • Dube G, Osifo P, Rutto H (2014) Preparation of bagasse ash/CaO/ammonium acetate sorbent and modelling their desulphurization reaction. Clean Techn Environ Policy 16:891–900

    Article  CAS  Google Scholar 

  • Egorova M (2003) Study of aspects of deep hydrodesulfurization by means of model reactions. PhD thesis, Swiss Federal Institute of Technology, Zurich, Switzerland

  • EPA/USA (2011) Environmental Protection Agency/United States of America http://www.epa.gov/air/air/so2. Accessed 18 June 2013

  • Erdogan S, Köytepe S, Seçkin T, Önal Y, Vural S, Basar CA (2014) V2O5-polyimide hybrid material: synthesis, characterization, and sulfur removal properties in fuels. Clean Techn Environ Policy 16:59–67

    Article  Google Scholar 

  • Figueiredo D (2009) Detecção de espécies bacterianas envolvidas em processos de biodessulfurização em um sistema de Landfarmig, na refinaria Gabriel Passos (REGAP), Minas Gerais, Brasil. Dissertation, Federal University of Ouro Preto, Brazil

  • Gray KA, Pogrebinsky O, Mrachko GT, Squires CH (1996) Biochemical characterization of the biodesulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8-potencial role in fossil fuel desulfurization (conference abstract). Abstr Pap Am Chem Soc 212 Meet Pt 1, p BIOL 054

  • Gray KA, Mrachko GT, Squires CH (2003) Biodesulfurization of fossil fuels. Curr Opni Microbiol 6:229–235

    Article  CAS  Google Scholar 

  • Gunam IBW, Yaku Y, Hirano M, Yamamura K, Tomita F, Sone T, Asano K (2006) Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Eng 101:322–327

    CAS  Google Scholar 

  • Gunam IBW, Kenta Y, Nengah IS, Nyoman SA, Wayan RA, Michiko T, Fusao T, Teruo S, Kozo A (2013) Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J. Microbiol. Biotechnol 23(4):473–482

    Article  CAS  Google Scholar 

  • Guobin S, Huaiyiang Z, Jianmin X, Guo C, Wangliang L, Huizhou L (2006) Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem Eng J 27:305–309

    Article  Google Scholar 

  • Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    Article  CAS  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2004) Desulfurization of transportation fuels by adsorption. Cat Ver-Sci Eng 46:111–150

    Article  Google Scholar 

  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol 60:223–226

    CAS  Google Scholar 

  • Kertesz MA (1999) Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    Google Scholar 

  • Kilbane JJ (1989) Desulfurization of coal: the microbial solution. Trends Biotechnol 7:97–101

    Article  CAS  Google Scholar 

  • Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Article  CAS  Google Scholar 

  • Kilbane JJ, Bielaga BA (1990) Toward sulfur-free fuels. Chem Tech 20:747–751

    CAS  Google Scholar 

  • Kilbane JJ, Jackowsky K (1992) Biodesulfurization of water-soluble coalderived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:107–1114

    Google Scholar 

  • Kilbane JJ, Le Borgne S (2004) Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) In petroleum biotechnology, developments and perspectives. Elsevier, RAmsterdam, pp 29–65

    Chapter  Google Scholar 

  • Kilbane JJ II, Robins J (2007) Characterization of the dsz ABC genes of Gordonia amicalis F.5.25.8 and identification of conserved protein and DNA sequences. Applied Genetics and Molecular Biotechnology 75:843–851

    CAS  Google Scholar 

  • Klein J, Catcheside DEA, Fakoussa R, Gazso L, Fritsche W, Höfer M, Laborda F, Margarit I, Rehm HJ, Reich-walber M, Sand W, Schacht S, Schmiers H, Setti L, Steinbüchel A (1999) Biological processing of fossil fuels. Appl Microbiol Biotechnol 53:2–15

    Article  Google Scholar 

  • Konishi J, Onaka T, Ishii Y, Suzuki M (2000) Demonstration of the carbon–sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154

    Article  CAS  Google Scholar 

  • Kropp KG, Fedorak PM (1998) A review of the occurrence, toxicity and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44:605–620

    Article  CAS  Google Scholar 

  • Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  Google Scholar 

  • Lee MK, Senius JD, Grossman MJ (1995) Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol 61:4362–4366

    CAS  Google Scholar 

  • Li W, Jiang X (2013) Enhancement of bunker oil biodesulfurization by adding surfactant. World J Microbiol Biotechnol 29:103–108

    Article  Google Scholar 

  • Li Y-G, Gao H-S, Li W-L, Xing J-M, Liu H-Z (2009) In situ magnetic separation and immobilization of dibenzothiophene desulfurizing bacteria. Bioresour Technol 100:5092–5096

    Article  CAS  Google Scholar 

  • Marcelis C (2002) Anaerobic biodesulfurization of thiophenes. PhD thesis, Wageningen University, The Netherlands

  • McFarland B (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264

    Article  CAS  Google Scholar 

  • Mehrara H, Roozbehani B, Shishehsaz MR, Mirdrikvand M, Moqadam SI (2014) Using Taguchi method to determine optimum process conditions for flue gas desulfurization through an amine scrubber. Clean Techn Environ Policy 16:59–67

    Article  CAS  Google Scholar 

  • Mohebali G, Ball AS (2008) Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology 154:2169–2183

    Article  CAS  Google Scholar 

  • Monticello DJ (1996) Multistage process for deep desulfurization of a fossil fuel. US Patent number 5510265

  • Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. ChemTech 28:38–45

    CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    Article  CAS  Google Scholar 

  • Muzic M, Sertic-Bionda K, Adzamic T (2012) Evaluation of commercial adsorbents and their application for desulfurization of model fuel. Clean Techn Environ Policy 14:283–290

    Article  CAS  Google Scholar 

  • Nuhu AA (2012) Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Biotechnol 12(1):9–23

    Article  Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechonol Biochem 63:1–9

    Article  CAS  Google Scholar 

  • Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344

    Article  CAS  Google Scholar 

  • Pan J, Wu F, Wang J, Yu L, Khayyat NH, Benjamin C, Stark BC, Kilbane JJ II (2013) Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112:385–390

    Article  CAS  Google Scholar 

  • Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475

    CAS  Google Scholar 

  • Quian EW (2008) Development of novel nonhydrogenation desulfurization process oxidative desulfurization of distillate. J Jpn Petrol Inst 51(1):14–31

    Article  Google Scholar 

  • Santos SCC, Alviano DS, Alviano CS, Pádula M, Leitão AC, Martins OB, Ribeiro CMS, Sassaki MYM, Matta CPS, Bevilaqua J, Sebastián GV, Seldin L (2006) Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotech 71(3):355–362

    Article  CAS  Google Scholar 

  • Santos SCC, Alviano DS, Alviano CS, Goulart FRV, Pádula M, Leitão AC, Martins OB, Ribeiro CMS, Sassaki MYM, Matta CPS, Bevilaqua J, Sebastián GV, Seldin L (2007) Comparative studies of phenotypic and genetic characteristics between two desulfurizing isolates of Rhodococcus erythropolis and the well-characterized R. erythropolis strain IGTS8. J Ind Microbiol Biotechnol 34:423–431

    Article  CAS  Google Scholar 

  • Silva TP, Paixão SM, Teixeira AV, Roseiro JC, Alves L (2013) Optimization of low sulfur carob pulp liquor as carbon source for fossil fuels biodesulfurization. J Chem Technol Biotechnol 88:919–923

    Article  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  Google Scholar 

  • Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–263

    Article  CAS  Google Scholar 

  • Swaty TE (2005) Global refining industry trends: the present and future. Hydrocarb Process 9:35–46

    Google Scholar 

  • Torktaz I, Etemadifar Z, Derikvand P (2012) Comparative modeling of DszC, an enzyme in biodesulfurization, and performing in silico point mutation for increasing tendency to oil. Bioinformation 8(5):246–250

    Article  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology Microbiol. Mol Biol 67(4):503–549

    Google Scholar 

  • Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007) Extensive desulfurization of diesel by Rhodococcus erythropolis. Biotechnol Lett 29:123–127

    Article  Google Scholar 

  • Zhang S, Chen H, Li W (2012) Kinetic analysis of biodesulfurization of model oil containing multiple alkyl dibenzothiophenes. Appl Microbiol Biotechnol 97(5):2193–2200

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The authors also thank Msc. Daniela Arruda Costa and Msc. Camila Siqueira Neves by the considerations, Msc. Erika Taylor and Rafael Bohlke for the English review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida de Resende Stoianoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boniek, D., Figueiredo, D., dos Santos, A.F.B. et al. Biodesulfurization: a mini review about the immediate search for the future technology. Clean Techn Environ Policy 17, 29–37 (2015). https://doi.org/10.1007/s10098-014-0812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0812-x

Keywords

Navigation