Skip to main content
Log in

Archaea: An Agro-Ecological Perspective

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms inhabiting bulk soil and rhizosphere play an important role in soil biogeochemical cycles leading to enhanced plant growth and productivity. In this context, the role of bacteria is well established, however, not much reports are available about the role archaea plays in this regard. Literature suggests that archaea also play a greater role in nutrient cycling of carbon, nitrogen, sulfur, and other minerals, possess various plant growth promoting attributes, and can impart tolerance to various abiotic stresses (especially osmotic and oxidative) in areas of high salinity, low and high temperatures and hydrogen ion concentrations. Thermoacidophilic archaea have been found to potentially involve in bioleaching of mineral ores and bioremediation of chemical pollutants and aromatic compounds. Looking at immense potential of archaea in promoting plant growth, alleviating abiotic stresses, and remediating contaminated sites, detailed studies are required to establish their role in different ecological processes, and their interactions in rhizosphere with plant and other microflora (bacteria and fungi) in different ecosystems. In this review, a brief discussion on archaea from the agro-ecological point of view is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Howland JL (2000) The surprising archaea: discovering another domain of life. Oxford University Press on Demand, Oxford

    Google Scholar 

  2. Reysenbach AL, Voytek M, Manicnelli R (2001) Thermophiles: biodiversity. Ecology, and evolution. Kluwer Academic-Plenum Publishers, New York

    Book  Google Scholar 

  3. Amend JP, Shock EL (2010) ChemInform abstract: energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. ChemInform. https://doi.org/10.1002/chin.200133293

    Article  Google Scholar 

  4. Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  5. Andrei AŞ, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9

    Article  CAS  PubMed  Google Scholar 

  6. Krause S, Bremges A, Münch PC et al (2017) Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-03315-6

    Article  CAS  Google Scholar 

  7. Deppenmeier U (2004) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283. https://doi.org/10.1016/s0079-6603(02)71045-3

    Article  Google Scholar 

  8. Delong EF (1992) Archaea in coastal marine environment. Proc Natl Acad Sci 89:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574. https://doi.org/10.1111/j.1574-6941.2010.00971.x

    Article  CAS  PubMed  Google Scholar 

  10. Schleper C, Holben W, Klenk HP (1997) Recovery of Crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl Environ Microbiol 63:321–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jurgens G, Lindstro K, Saano A (1997) Novel group within the Kingdom. Microbiology 63:803–805

    CAS  Google Scholar 

  12. Yadav AN (2017) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour. https://doi.org/10.19080/ijesnr.2017.03.555601

    Article  Google Scholar 

  13. Kumar S, Puniya AK, Puniya M et al (2009) Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol 25:1557–1566. https://doi.org/10.1007/s11274-009-0041-3

    Article  Google Scholar 

  14. Nkamga VD, Henrissat B, Drancourt M (2017) Archaea: essential inhabitants of the human digestive microbiota. Hum Microbiome J 3:1–8

    Article  Google Scholar 

  15. Makarova KS, Koonin EV (2003) Comparative genomics of archaea: how much have we learned in six years, and what’s next? Genome Biol 4:1–17

    Article  Google Scholar 

  16. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719. https://doi.org/10.1093/nar/gkn668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaba S, Kumari A, Medema M, Kaushik R (2020) Pan-genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super-order. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-77723-6

    Article  CAS  Google Scholar 

  18. Wagner A, Whitaker RJ, Krause DJ et al (2017) Mechanisms of gene flow in archaea. Nat Rev Microbiol 15:492–501

    Article  CAS  PubMed  Google Scholar 

  19. Nath Yadav A, Verma P, Kaushik R et al (2017) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298

    Google Scholar 

  20. Lammel DR, Feigl BJ, Cerri CC, Nüsslein K (2015) Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian soils. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.01057

    Article  Google Scholar 

  21. Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80:305–311. https://doi.org/10.1111/j.1574-6941.2012.01298.x

    Article  CAS  PubMed  Google Scholar 

  22. Mamet SD, Lamb EG, Piper CL et al (2017) Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion. ISME J 11:1261–1275. https://doi.org/10.1038/ismej.2016.205

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen XP, Zhu YG, Xia Y et al (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987. https://doi.org/10.1111/j.1462-2920.2008.01613.x

    Article  CAS  PubMed  Google Scholar 

  24. Mohanty S, Kollah B, Chaudhary RS et al (2015) Methane uptake in tropical soybean–wheat agroecosystem under different fertilizer regimes. Environ Earth Sci 74:5049–5061. https://doi.org/10.1007/s12665-015-4603-4

    Article  CAS  Google Scholar 

  25. Fox GE, Stackebrandt E, Hespell RB et al (1980) The phylogeny of prokaryotes. Science 209:457–463

    Article  CAS  PubMed  Google Scholar 

  26. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. https://doi.org/10.1038/nrmicro1852

    Article  CAS  PubMed  Google Scholar 

  28. Elkins JG, Podar M, Graham DE et al (2008) A korarchaeal genome reveals insights into the evolution of the archaea. Proc Natl Acad Sci 105:8102–8107. https://doi.org/10.1073/pnas.0801980105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Waters E, Hohn MJ, Ahel I et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci 100:12984–12988. https://doi.org/10.1073/pnas.1735403100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nunoura T, Takaki Y, Kakuta J et al (2011) Insights into the evolution of archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–3223. https://doi.org/10.1093/nar/gkq1228

    Article  CAS  PubMed  Google Scholar 

  31. Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437. https://doi.org/10.1038/nature12352

    Article  CAS  PubMed  Google Scholar 

  32. Petitjean C, Deschamps P, López-Garciá P, Moreira D (2014) Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol 7:191–204. https://doi.org/10.1093/gbe/evu274

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mayer F, Müller V (2014) Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 38:449–472

    Article  CAS  PubMed  Google Scholar 

  34. Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7:1–13. https://doi.org/10.1186/s40168-019-0630-9

    Article  Google Scholar 

  35. Haroon MF, Hu S, Shi Y et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570. https://doi.org/10.1038/nature12375

    Article  CAS  PubMed  Google Scholar 

  36. Zhang R, Neu TR, Li Q et al (2019) Insight into interactions of thermoacidophilic archaea with elemental sulfur: biofilm dynamics and EPS analysis. Front Microbiol 10:1–16. https://doi.org/10.3389/fmicb.2019.00896

    Article  Google Scholar 

  37. Yadav AN, Sharma D, Gulati S et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep. https://doi.org/10.1038/srep12293

    Article  PubMed  PubMed Central  Google Scholar 

  38. Adams MWW (1994) Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiol Rev 15:261–277. https://doi.org/10.1111/j.1574-6976.1994.tb00139.x

    Article  CAS  PubMed  Google Scholar 

  39. Verhaart MRA, Bielen AAM, Van Der Oost J et al (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003. https://doi.org/10.1080/09593331003710244

    Article  CAS  PubMed  Google Scholar 

  40. Lecker B, Illi L, Lemmer A, Oechsner H (2017) Biological hydrogen methanation—a review. Bioresour Technol 245:1220–1228. https://doi.org/10.1016/j.biortech.2017.08.176

    Article  CAS  PubMed  Google Scholar 

  41. Lee JC, Kim JH, Chang WS, Pak D (2012) Biological conversion of CO 2 to CH 4 using hydrogenotrophic methanogen in a fixed bed reactor. J Chem Technol Biotechnol 87:844–847. https://doi.org/10.1002/jctb.3787

    Article  CAS  Google Scholar 

  42. Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 22:253–260

    Article  CAS  PubMed  Google Scholar 

  43. Kim DJ, Kim O, Kim HW et al (2009) ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:544–550. https://doi.org/10.1107/S1744309109017485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loder AJ, Zeldes BM, Conway JM et al (2017) Extreme thermophiles as metabolic engineering platforms: strategies and current perspective. Ind Biotechnol Microorg 2:505–580

    Google Scholar 

  45. Counts JA, Zeldes BM, Lee LL et al (2017) Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. Wiley Interdiscip Rev Syst Biol Med. https://doi.org/10.1002/wsbm.1377

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saxena AK, Kaushik R, Yadav AN et al (2015) Role of Archaea in sustenance of plants in extreme saline environments. In: Proceeding of 56th Annual Conference of Association of Microbiologists of India and International Symposium on “Emerging Discoveries in Microbiology”. https://doi.org/10.13140/RG.2.1.2073.9925

  47. Saxena AK, Shende R, Pandey AK (2005) Culturing of plant growth promoting rhizobacteria. Basic research applications of mycorrhizae. IK International Pvt Ltd, New Delhi, pp 453–474

    Google Scholar 

  48. Mus F, Crook MB, Garcia K et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710. https://doi.org/10.1128/AEM.01055-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:1–12. https://doi.org/10.3389/fmicb.2013.00201

    Article  Google Scholar 

  50. Belay N, Sparling R, Daniels L (1984) Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288. https://doi.org/10.1038/312286a0

    Article  CAS  PubMed  Google Scholar 

  51. Murray PA, Zinder SH (1984) Nitrogen fixation by a methanogenic archaebacterium. Nature 312:284–286. https://doi.org/10.1038/312284a0

    Article  CAS  Google Scholar 

  52. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2:125–31

    CAS  PubMed  Google Scholar 

  53. Bae HS, Morrison E, Chanton JP, Ogram A (2018) Methanogens are major contributors to nitrogen fixation in soils of the Florida Everglades. Appl Environ Microbiol 84:1–16. https://doi.org/10.1128/AEM.02222-17

    Article  CAS  Google Scholar 

  54. Mirza BS, Potisap C, Nüsslein K et al (2014) Response of free-living nitrogen-fixing microorganisms to land use change in the amazon rainforest. Appl Environ Microbiol 80:281–288. https://doi.org/10.1128/AEM.02362-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  56. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996. https://doi.org/10.1104/pp.111.175448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1–14

    Article  Google Scholar 

  58. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  59. White RH (1987) Indole-3-acetic acid and 2-(indol-3-ylmethyl)indol-3-yl acetic acid in the thermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol 169:5859–5860. https://doi.org/10.1128/jb.169.12.5859-5860.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dave BP, Anshuman K, Hajela P (2006) Siderophores of halophilic archaea and their chemical characterization. Indian J Exp Biol 44:340–344

    CAS  PubMed  Google Scholar 

  61. Anderson I, Scheuner C, Göker M et al (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS ONE. https://doi.org/10.1371/journal.pone.0020237

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159. https://doi.org/10.1111/j.1472-765X.2005.01827.x

    Article  CAS  PubMed  Google Scholar 

  63. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  64. Chinnadurai C, Balachandar D, Sundaram SP (2009) Characterization of 1-aminocyclopropane-1-carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation. World J Microbiol Biotechnol 25:1403–1411. https://doi.org/10.1007/s11274-009-0027-1

    Article  CAS  Google Scholar 

  65. Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.00937

    Article  CAS  Google Scholar 

  66. Fujino A, Ose T, Yao M et al (2004) Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. J Mol Biol 341:999–1013. https://doi.org/10.1016/j.jmb.2004.06.062

    Article  CAS  PubMed  Google Scholar 

  67. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  68. Sandhya V, Ali S, Grover M et al (2009) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  69. Grover M, Ali SZ, Sandhya V et al (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. https://doi.org/10.1007/s11274-010-0572-7

    Article  Google Scholar 

  70. Farooq M, Wahid A, Kobayashi N, Fujita DB, Basra SMA (2009) Plant drought stress: effects, mechanisms, and management. In: Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C (eds) Sustainable Agriculture. Springer, Dordrecht, pp 153–188

  71. Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56:715–721. https://doi.org/10.1071/AR04082

    Article  Google Scholar 

  72. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530. https://doi.org/10.1016/j.plantsci.2003.10.025

    Article  CAS  Google Scholar 

  73. Afrasayab S, Faisal M, Hasnain S (2010) Comparative study of wild and transformed salt tolerant bacterial strains on Triticum aestivum growth under salt stress. Braz J Microbiol 41:946–955. https://doi.org/10.1590/S1517-83822010000400013

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Zhao L, Wang Y et al (2008) Enhancement of heavy metal accumulation by tissue specific co-expression of iaaM and ACC deaminase genes in plants. Chemosphere 72:564–571. https://doi.org/10.1016/j.chemosphere.2008.03.043

    Article  CAS  PubMed  Google Scholar 

  75. Yadav AN, Gulati S, Sharma D et al (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia (Bratisl) 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  76. Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  PubMed  Google Scholar 

  77. Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056. https://doi.org/10.1128/AEM.66.3.1050-1056.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Reductive precipitation of gold by dissimilatory Fe. Appl Environ Microbiol 68:1735. https://doi.org/10.1128/AEM.67.7.3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hawkes RB, Franzmann PD, O’hara G, Plumb JJ (2006) Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. Extremophiles 10:525–530. https://doi.org/10.1007/s00792-006-0527-y

    Article  CAS  PubMed  Google Scholar 

  80. Bathe S, Norris PR (2007) Ferrons iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497. https://doi.org/10.1128/AEM.02589-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692. https://doi.org/10.1128/AEM.02019-07

    Article  CAS  PubMed  Google Scholar 

  82. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263. https://doi.org/10.1111/j.1472-765X.1990.tb00176.x

    Article  CAS  Google Scholar 

  83. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H et al (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328. https://doi.org/10.1007/s00792-010-0312-9

    Article  CAS  PubMed  Google Scholar 

  84. Tapilatu YH, Grossi V, Acquaviva M et al (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231. https://doi.org/10.1007/s00792-010-0301-z

    Article  CAS  PubMed  Google Scholar 

  85. Al-Mailem DM, Eliyas M, Radwan SS (2012) Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758. https://doi.org/10.1007/s00792-012-0471-y

    Article  CAS  PubMed  Google Scholar 

  86. Al-Mailem DM, Eliyas M, Radwan S (2014) Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization. Environ Sci Pollut Res 21:3386–3394. https://doi.org/10.1007/s11356-013-2293-6

    Article  CAS  Google Scholar 

  87. Brim H, Osborne JP, Kostandarithes HM et al (2006) Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology 152:2469–2477. https://doi.org/10.1099/mic.0.29009-0

    Article  CAS  PubMed  Google Scholar 

  88. Lage CAS, Dalmaso GZL, Teixeira LCRS et al (2012) Mini-Review: probing the limits of extremophilic life in extraterrestrial environment-simulated experiments. Int J Astrobiol 11:251–256. https://doi.org/10.1017/S1473550412000316

    Article  Google Scholar 

  89. Zhang CL, Ye Q, Huang Z et al (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:6417–6426. https://doi.org/10.1128/AEM.00843-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shen JP, Zhang LM, Di HJ, He JZ (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3:1–7

    Google Scholar 

  91. Zhalnina K, Dörr de Quadros P, Camargo FAO, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:1–9. https://doi.org/10.3389/fmicb.2012.00210

    Article  CAS  Google Scholar 

  92. Taffner J, Erlacher A, Bragina A et al (2018) What is the role of archaea in plants? New insights from the vegetation of alpine bogs. mSphere 3:1–14. https://doi.org/10.1128/msphere.00122-18

    Article  CAS  Google Scholar 

  93. Müller H, Berg C, Landa BB et al (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:1–9. https://doi.org/10.3389/fmicb.2015.00138

    Article  Google Scholar 

  94. Hinrichs K-U, Hayes JM, Sylva SP (1999) Hinrichs_1999. Lett Nat 398:802–805

    Article  CAS  Google Scholar 

  95. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513. https://doi.org/10.1021/cr050362v

    Article  CAS  PubMed  Google Scholar 

  96. Wang FP, Zhang Y, Chen Y et al (2014) Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8:1069–1078. https://doi.org/10.1038/ismej.2013.212

    Article  CAS  PubMed  Google Scholar 

  97. Lin YS, Heuer VB, Ferdelman TG, Hinrichs KU (2010) Microbial CONVERSION of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany). Biogeosciences 7:2433–2444. https://doi.org/10.5194/bg-7-2433-2010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Biotechnology (project Grant Number: BT/PR6540/BCE/8/917/2012) project for funding the research work.

Author information

Authors and Affiliations

Authors

Contributions

Dr RK suggested the idea underlying the manuscript and reviewed and edited the same. MGN has written and compiled the manuscript.

Corresponding author

Correspondence to Rajeev Kaushik.

Ethics declarations

Conflict of interest

The authors hereby declare that there is no conflict of interest for authorship of the manuscript in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naitam, M.G., Kaushik, R. Archaea: An Agro-Ecological Perspective. Curr Microbiol 78, 2510–2521 (2021). https://doi.org/10.1007/s00284-021-02537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02537-2

Navigation