Skip to main content
Log in

Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Hemophagocytic lymphohistiocytosis (HLH), a hyperinflammatory syndrome, is caused by the incessant activation of lymphocytes and macrophages, resulting in damage to organs, including hematopoietic organs. Recently, we demonstrated that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated (SAMP1/TA-1) mice but not in senescence-resistant control (SAMR1) mice. Hematopoietic failure in LPS-treated SAMP1/TA-1 mice was attributed to hematopoietic microenvironment dysfunction, concomitant with severely imbalanced M1 and M2 macrophage polarization. Macrophages are a major component of the bone marrow (BM) hematopoietic microenvironment. Clodronate liposomes are useful tools for in vivo macrophage depletion. In this study, we depleted macrophages using clodronate liposomes to determine their role in the hematopoietic microenvironment in SAMP1/TA-1 and SAMR1 mice. Under clodronate liposome treatment, the response between SAMR1 and SAMP1/TA-1 mice differed as follows: (1) increase in the number of activated M1 and M2 macrophages derived from newly generated macrophages and M2-dominant and imbalanced M1 and M2 macrophage polarization in the BM and spleen; (2) severe anemia and thrombocytopenia; (3) high mortality rate; (4) decrease in erythroid progenitors and B cell progenitors in the BM; and (5) decrease in the mRNA expression of erythroid-positive regulators such as erythropoietin and increase in that of erythroid- and B lymphoid-negative regulators such as interferon-γ in the BM. Depletion of residual macrophages in SAMP1/TA-1 mice impaired hematopoietic homeostasis, particularly erythropoiesis and B lymphopoiesis, owing to functional impairment of the hematopoietic microenvironment accompanied by persistently imbalanced M1/M2 polarization. Thus, macrophages play a vital role in regulating the hematopoietic microenvironment to maintain homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G (2007) HLH-2004: diagnostic and therapeutic guideline for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48:124–131. https://doi.org/10.1002/pbc.21039

    Article  PubMed  Google Scholar 

  2. Janka GE (2012) Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 63:233–246. https://doi.org/10.1146/annurev-med-041610-134208

    Article  CAS  PubMed  Google Scholar 

  3. Tsuboi I, Harada T, Hirabayashi Y, Aizawa S (2019) Senescence-accelerated mice (SAMP1/TA-1) treated repeatedly with lipopolysaccharide develop a condition that resembles hemophagocytic lymphohistiocytosis. Haematologica 104:1995–2005. https://doi.org/10.3324/haematol.2018.209551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dexter TM, Allen TD, Lajtha LG (1977) Condition controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol 91:335–344. https://doi.org/10.1002/jcp.1040910303

    Article  CAS  PubMed  Google Scholar 

  5. Mori KJ, Fujitake H, Okubo H, Dexter TM, Ito Y (1979) Quantitative development of adherent cell colonies in bone marrow cell culture in vitro. Exp Hematol 7:171–176

    CAS  PubMed  Google Scholar 

  6. Aizawa S, Yaguchi M, Nakano M, Toyama K, Inokuchi S, Imai T, Yasuda M, Nabeshima R, Handa H (1994) Hematopoietic supportive function of human bone marrow stromal cell lines established by a recombinant SV40-adenovirus vector. Exp Hematol 22:482–487

    CAS  PubMed  Google Scholar 

  7. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17:183–194. https://doi.org/10.1016/0047-6374(81)90084-1

    Article  CAS  PubMed  Google Scholar 

  8. Tsuboi I, Morimoto K, Horie T, Mori KJ (1991) Age-related changes in various hematopoietic progenitor cells in senescence-accelerated (SAM-P) mice. Exp Hematol 19:874–877

    CAS  PubMed  Google Scholar 

  9. Tsuboi I, Morimoto K, Hirabayashi Y, Li GX, Aizawa S, Mori KJ, Kanno J, Inoue T (2004) Senescent B lymphopoiesis is balanced in suppressive homeostasis: a decrease in interleukin-7 and transforming growth factor-beta levels in stromal cells of senescence-accelerated mice. Exp Biol Med (Maywood) 229:494–502. https://doi.org/10.1177/153537020422900607

    Article  CAS  PubMed  Google Scholar 

  10. Tsuboi I, Hirabayashi Y, Harada T, Koshinaga M, Kawamata T, Kanno J, Inoue T, Aizawa S (2008) Role of hematopoietic microenvironment in prolonged impairment of B cell regeneration in age-related stroma-cell impaired (SCI) SAMP1 mouse: effect of a single dose of 5-fluorouracil. J Appl Toxicol 28:797–805. https://doi.org/10.1002/jat.1341

    Article  CAS  PubMed  Google Scholar 

  11. Harada T, Tsuboi I, Hino H, Yuda M, Hirabayashi Y, Hirai S, Aizawa S (2021) Age-related exacerbation of hematopoietic organ damage induced by systemic hyper-inflammation in senescence-accelerated mice. Sci Rep 11:23250. https://doi.org/10.1038/s41598-021-02621-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ho YH, Méndez-Ferrer S (2020) Microenvironmental contributions to hematopoietic stem cell aging. Haematologica 105:38–46. https://doi.org/10.3324/haematol.2018.211334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuboi I, Harada T, Hirabayashi Y, Aizawa S (2020) Dynamics of hematopoiesis is disrupted by impaired hematopoietic microenvironment in a mouse model of hemophagocytic lymphohistiocytosis. Ann Hematol 99:1515–1523. https://doi.org/10.1007/s00277-020-04095-2

    Article  CAS  PubMed  Google Scholar 

  14. Yuda M, Aizawa S, Tsuboi I, Hirabayashi Y, Harada T, Hino H, Hirai S (2022) Imbalanced M1 and M2 macrophage polarization in bone marrow provokes impairment of the hematopoietic microenvironment in a mouse model of hemophagocytic lymphohistiocytosis. Biol Pharm Bull 45:1602–1608. https://doi.org/10.1248/bpb.b22-00108

    Article  CAS  PubMed  Google Scholar 

  15. McCabe A, MacNarama KC (2016) Macrophage: key regulator of steady-state and demand-adapted hematopoiesis. Exp Hematol 44:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seyfried AN, Maloney JM, MacNamara KC (2020) Macrophage orchestrate hematopoietic programs and regulate HSC function during inflammatory stress. Front Immunol 11:1499. https://doi.org/10.3389/fimmu.2020.01499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Y, Shao L, Chang J, Feng W, Liu YL, Cottler-Fox MH, Emanuel PD, Hauer-Jensen M, Bernstein ID, Liu L, Chen X, Zhou J, Murray PJ, Zhou D (2018) M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion. Blood Adv 2:859–870. https://doi.org/10.1182/bloodadvances.2018015685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao HY, Lyu ZS, Duan CW, Song Y, Han TT, Mo XD, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y (2018) An unbalanced monocyte macrophage polarization in the bone marrow microenvironment of patients with poor graft function after allogeneic haematopoietic stem cell transplantation. Br J Haematol 182:679–692. https://doi.org/10.1111/bjh.15452

    Article  CAS  PubMed  Google Scholar 

  19. Kozicky LK, Sly LM (2019) Depletion and reconstitution of macrophage in mice. Methods Mol Biol 1960:101–112. https://doi.org/10.1007/978-1-4939-9167-9_9

    Article  CAS  PubMed  Google Scholar 

  20. Giuliani AL, Wiener E, Lee MJ, Brown IN, Berti G, Wickramasinghe SN (2001) Changes in murine bone marrow macrophages and erythroid burst-forming cells following the intravenous injection of liposome-encapsulated dichloromethylene diphosphonate (Cl2MDP). Eur J Haematol 66:221–229. https://doi.org/10.1034/j.1600-0609.2001.066004221.x

    Article  CAS  PubMed  Google Scholar 

  21. Alves-Rosa F, Vermeulen M, Cabrera J, Stanganelli C, Capozzo A, Narbaitz M, van Rooijen N, Palermo M, Isturiz MA (2003) Macrophage depletion following liposomal-encapsulated clodronate (LIP-CLOD) injection enhances megakaryocytopoietic and thrombopoietic activities in mice. Br J Haematol 121:130–138. https://doi.org/10.1046/j.1365-2141.2003.04259.x

    Article  CAS  PubMed  Google Scholar 

  22. Ladoni VI, Vermeulen M, van Rooijen N, Gomez S, Palermo M, Isturiz MA (2004) Macrophage derived signalling regulates negatively the megakaryocyte compartment. Cell Mol Biol (Noisy-Le-Grand) 50: Online Pub. OL667–675

  23. Ju W, Lu W, Bao Y, Sun T, Adzraku SY, Fu C, Qi K, Zhang X, Li Z, Xu K, Qiao J, Zeng L (2021) Clodronate-liposomes aggravate irradiation-induced myelosuppression by promoting myeloid differentiation. Int J Radiat Biol 97:240–248. https://doi.org/10.1080/09553002.2021.1857452

    Article  CAS  PubMed  Google Scholar 

  24. Ingoglia G, Yalamanoglu A, Pfefferlé M, Dubach IL, Schaer CA, Valkova K, Hansen K, Schulthess N, Humar R, Schaer DJ, Vallelian F (2020) Line-selective macrophage activation with an anti-CD40 antibody drives a hemophagocytic syndrome in mice. Blood Adv 4:2751–2761. https://doi.org/10.1182/bloodadvances.2020001624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaur S, Raggatt LJ, Millard SM, Wu AC, Batoon L, Jacobsen RN, Winkler IG, MacDonald KP, Perkins AC, Hume DA, Levesque JP, Pettit AR (2018) Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood 132:735–749. https://doi.org/10.1182/blood-2018-01-829663

    Article  CAS  PubMed  Google Scholar 

  26. Harada T, Tsuboi I, Hirabayashi Y, Kosaku K, Naito M, Hara H, Inoue T, Aizawa S (2015) Decreased “ineffective erythropoiesis” preserves polycythemia in mice under long-term hypoxia. Clin Exp Med 15:179–188. https://doi.org/10.1007/s10238-014-0286-5

    Article  CAS  PubMed  Google Scholar 

  27. Harada T, Tsuboi I, Utsunomiya M, Yasuda M, Aizawa S (2020) Kinetics of leukemic cells in 3D culture with stromal cells and with arginine deprivation stress. J Biosci Bioeng 130:650–658. https://doi.org/10.1016/j.jbiosc.2020.07.018

    Article  CAS  PubMed  Google Scholar 

  28. Sica A, Mantovani A (2012) Macrophage plasticity and polarization in vivo veritas. J Clin Invest 122:787–795. https://doi.org/10.1172/JCI59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Front Immunol 5:614. https://doi.org/10.3389/fimmu.2014.00614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiba Y, Shimada A, Kumagai N, Yoshikawa K, Ishii S, Furukawa A, Takei S, Sakura M, Kawamura N, Hosokawa M (2009) The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model. Neurochem Res 34:679–687. https://doi.org/10.1007/s11064-008-9812-8

    Article  CAS  PubMed  Google Scholar 

  31. Strippoli R, Carvello F, De Pasquale L, Vivarelli M, Petrini S, Bracci-Laudiero L, De Benedetti F (2012) Amplification of response to toll-like receptor ligands by prolonged exposure to interleukin-6 in mice. Arthritis Rheum 64:1680–1688

    Article  CAS  PubMed  Google Scholar 

  32. Wang A, Pope SD, Weinstein JS, Yu S, Zhang C, Booth CJ, Medzhitov R (2019) Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proc Natl Acad Sci U S A 116:2200–2209. https://doi.org/10.1073/pnas.1820704116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perron-Deshaies G, St-Louis P, Romero H, Scorza T (2020) Impact of erythropoietin production by erythroblastic island macrophages on homeostatic murine erythropoiesis. Int J Mol Sci 21:8930. https://doi.org/10.3390/ijms21238930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aizawa S, Amaki I, Fujita J, Tsurusawa M, Mori KJ (1984) LPS induces migration of bone marrow cells in LPS-nonresponsive C3H/HeJ mice. J Radiat Res 25:91–98

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Japan Society for the Promotion of Science KAKENHI (grant number JP18K06846).

Author information

Authors and Affiliations

Authors

Contributions

Study design, data analysis, interpretation, and manuscript review: Takashi Koike, Katsuhiro Miura, Yoshihiro Hatta, Hideki Nakamura, Yoko Hirabayashi, Miyuki Yuda, Tomonori Harada, Shuichi Hirai, Isao Tsuboi, and Shin Aizawa. Experimentation: Takashi Koike, Yoshihiro Hatta, Miyuki Yuda, Tomonori Harada, Isao Tsuboi, and Shin Aizawa. Manuscript writing: Takashi Koike, Katsuhiro Miura, Yoshihiro Hatta, Hideki Nakamura, Yoko Hirabayashi, Tomonori Harada, Shuichi Hirai, Isao Tsuboi, and Shin Aizawa.

Corresponding author

Correspondence to Katsuhiro Miura.

Ethics declarations

Ethics approval

This study was reviewed and approved by the Animal Care and Use Committee of Nihon University (experimental code AP19MED019-2, AP21MED026-1, and AP19Med050-3).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (1.42 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, T., Miura, K., Hatta, Y. et al. Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis. Ann Hematol 102, 3311–3323 (2023). https://doi.org/10.1007/s00277-023-05425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05425-w

Keywords

Navigation