Skip to main content
Log in

Decreased “ineffective erythropoiesis” preserves polycythemia in mice under long-term hypoxia

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5–7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsiftsoglou AS, Vizirianakis IS, Strouboulis J (2009) Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61:800–830

    Article  CAS  PubMed  Google Scholar 

  2. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141:325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jelkmann W (2004) Molecular biology of erythropoietin. Intern Med 43:649–659

    Article  CAS  PubMed  Google Scholar 

  4. Rogers HM, Yu X, Wen J, Smith R, Fibach E, Noguchi CT (2008) Hypoxia alters progression of the erythroid program. Exp Hematol 36:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fried W, Johnson C, Heller P (1970) Observations on regulation of erythropoiesis during prolonged periods of hypoxia. Blood 36:607–616

    CAS  PubMed  Google Scholar 

  6. Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258:F1432–F1437

    CAS  PubMed  Google Scholar 

  7. Kapa D, Biljanović-Paunović L, Milenković P, Pavlović-Kentera V (1984) Effect of suppression and stimulation of erythropoiesis on CFU-E in mouse spleen. Acta Haematol 72:295–302

    Article  CAS  PubMed  Google Scholar 

  8. Alippi RM, Barcelo AC, Bozzini CE (1983) Erythropoietic response to hypoxia in mice with polycythemia induced by hypoxia or transfusion. Exp Hematol 11:122–128

    CAS  PubMed  Google Scholar 

  9. Berglund B (1992) High-altitude training. Aspects of haematological adaptation. Sports Med 14:289–303

    Article  CAS  PubMed  Google Scholar 

  10. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118:6258–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu DC, Paulson RF (2010) Hypoxia regulates BMP4 expression in the murine spleen during the recovery from acute anemia. PLoS ONE 5:e11303

    Article  PubMed  PubMed Central  Google Scholar 

  12. Paulson RF, Shi L, Wu DC (2011) Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol 18:139–145

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsuboi I, Harada T, Hirabayashi Y, Kanno J, Inoue T, Aizawa S (2010) Inflammatory biomarker, neopterin, predominantly enhances myelopoiesis, which suppressed erythropoiesis via activated stromal cells. Immunobiology 215:348–355

    Article  CAS  PubMed  Google Scholar 

  14. Okamura H, Hirabayashi Y, Harada T, Kosaku K, Tsuboi I, Aizawa S. Hematopoiesis in mice in response to chronic hypoxia. (in Japanese) J Nihon Univ Med Ass 2013; 72: 266–73

  15. Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, Katsura Y (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109:280–287

    Article  CAS  PubMed  Google Scholar 

  16. Maekawa S, Iemura H, Kato T (2013) Enhanced erythropoiesis in mice exposed to low environmental temperature. J Exp Biol 216:901–908

    Article  CAS  PubMed  Google Scholar 

  17. Koulnis M, Pop R, Porpiglia E, Shearstone JR, Hidalgo D, Socolovsky M (2011) Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp 54:1–6

    Google Scholar 

  18. Ebert BL, Bunn HF (1999) Regulation of the erythropoietin gene. Blood 94:1864–1877

    CAS  PubMed  Google Scholar 

  19. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Schütz G, Beug H (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13:2996–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mide SM, Huygens P, Bozzini CE, Fernandez Pol JA (2001) Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia. In Vivo 15:125–132

    CAS  PubMed  Google Scholar 

  21. Vannucchi AM, Bianchi L, Cellai C, Paoletti F, Carrai V, Calzolari A, Centurione L, Lorenzini R, Carta C, Alfani E, Sanchez M, Migliaccio G, Migliaccio AR (2001) Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1(low) mice). Blood 97:3040–3050

    Article  CAS  PubMed  Google Scholar 

  22. Brandan N, Aguirre M, Carmuega R, Alvarez M, Juaristi J (1997) Proliferative and maturative behaviour patterns on murine bone marrow and spleen erythropoiesis along hypoxia. Acta Physiol Pharmacol Ther Latinoam 47:125–135

    CAS  PubMed  Google Scholar 

  23. Lenox LE, Perry JM, Paulson RF (2005) BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105:2741–2748

    Article  CAS  PubMed  Google Scholar 

  24. Perry JM, Harandi OF, Paulson RF (2007) BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 109:4494–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88–89

    Article  CAS  PubMed  Google Scholar 

  26. Detmer K, Walker AN (2002) Bone morphogenetic proteins act synergistically with haemopoietic cytokines in the differentiation of haematopoietic progenitors. Cytokine 17:36–42

    Article  CAS  PubMed  Google Scholar 

  27. Maguer-Satta V, Bartholin L, Jeanpierre S, Ffrench M, Martel S, Magaud JP, Rimokh R (2003) Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGFbeta family. Exp Cell Res 282:110–120

    Article  CAS  PubMed  Google Scholar 

  28. Koulnis M, Liu Y, Hallstrom K, Socolovsky M (2011) Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS ONE 6:e21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rhodes MM, Kopsombut P, Bondurant MC, Price JO, Koury MJ (2005) Bcl-x(L) prevents apoptosis of late-stage erythroblasts but does not mediate the antiapoptotic effect of erythropoietin. Blood 106:1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid for Scientific Research (C) and grants-in-aid for Young Scientists (B) from the Ministry of Education, Culture, Sports and Science and Technology of Japan and the Japan Society for the Promotion of Science.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Tsuboi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, T., Tsuboi, I., Hirabayashi, Y. et al. Decreased “ineffective erythropoiesis” preserves polycythemia in mice under long-term hypoxia. Clin Exp Med 15, 179–188 (2015). https://doi.org/10.1007/s10238-014-0286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0286-5

Keywords

Navigation