Skip to main content

Advertisement

Log in

The Senescence-accelerated Mouse (SAM): A Higher Oxidative Stress and Age-dependent Degenerative Diseases Model

  • MINI-REVIEW
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The SAM strain of mice is actually a group of related inbred strains consisting of a series of SAMP (accelerated senescence-prone) and SAMR (accelerated senescence-resistant) strains. Compared with the SAMR strains, the SAMP strains show a more accelerated senescence process, a shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to human geriatric disorders. The higher oxidative stress status observed in SAMP mice is partly caused by mitochondrial dysfunction, and may be a cause of this senescence acceleration and age-dependent alterations in cell structure and function. Based on our recent observations, we discuss a possible mechanism for mitochondrial dysfunction resulting in the excessive production of reactive oxygen species, and a role for the hyperoxidative stress status in neurodegeneration in SAMP mice. These SAM strains can serve as a useful tool to understand the cellular mechanisms of age-dependent degeneration, and to develop clinical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hosokawa M, Abe T, Higuchi K et al (1997) Management and design of the maintenance of SAM mouse strains: an animal model for accelerated senescence and age-associated disorders. Exp Gerontol 32:111–116. doi:10.1016/S0531-5565(96)00078-2

    Article  PubMed  CAS  Google Scholar 

  2. Hosokawa M, Kasai R, Higuchi K et al (1984) Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM). Mech Ageing Dev 26:91–102. doi:10.1016/0047-6374(84)90168-4

    Article  PubMed  CAS  Google Scholar 

  3. Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110. doi:10.1016/S0197-4580(99)00008-1

    Article  PubMed  CAS  Google Scholar 

  4. Strehler BL (1977) Time, cells, and aging, 2nd edn. Academic Press, New York

    Google Scholar 

  5. Takeda T, Hosokawa M, Higuchi K (1994) Senescence-accelerated mouse (SAM). A novel murine model of aging. In: Takeda T (ed) The SAM model of senescence. Excerpta Medica, Amsterdam, pp 15–22

    Google Scholar 

  6. Hosokawa M, Umezawa M, Higuchi K et al (1998) Interventions of senescence in SAM mice. J Anti Aging Med 1:27–37

    Google Scholar 

  7. Hosokawa M (2002) A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice. Mech Ageing Dev 123:1553–1561. doi:10.1016/S0047-6374(02)00091-X

    Article  PubMed  CAS  Google Scholar 

  8. Nomura Y, Takeda T, Okuma Y (eds) (2004) The Senescence-accelerated mouse (SAM): an animal model of senescence. International Congress Series 1260, Elsevier B·V, Amsterdam

  9. Cotran RS (1989) Diseases of aging. In: Cotran RS, Kumar V, Robbins SL (eds) Robbins pathologic basis of disease, 4th edn. W·B. Saunders Company, Philadelphia, pp 543–551

    Google Scholar 

  10. Komura S, Yoshino K, Kondo K et al (1988) Lipid peroxide levels in the skin of the senescence-accelerated mouse. J Clin Biochem Nutr 5:255–260

    CAS  Google Scholar 

  11. Chiba Y, Yamashita Y, Ueno M et al (2005) Cultured murine dermal fibroblast-like cells from senescence-accelerated mice as in vitro models for higher oxidative stress due to mitochondrial alterations. J Gerontol A Biol Sci Med Sci 60A:1087–1098

    CAS  Google Scholar 

  12. Hosokawa M, Ashida Y, Nishikawa T et al (1994) Accelerated aging of dermal fibroblast-like cells from senescence-accelerated mouse (SAM). 1. Acceleration of population aging in vitro. Mech Ageing Dev 74:65–77

    Article  PubMed  CAS  Google Scholar 

  13. Fujisawa H, Nishikawa T, Zhu BH et al (1999) Aminoguanidine supplementation delays the onset of senescence in vitro in dermal fibroblast-like cells from senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 54A:B276–B282

    CAS  Google Scholar 

  14. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778. doi:10.1073/pnas.91.23.10771

    Article  PubMed  CAS  Google Scholar 

  15. Lenaz G, Bovina C, D’Aurelio M et al (2002) Role of mitochondria in oxidative stress and aging. Ann N Y Acad Sci 959:199–213

    Article  PubMed  CAS  Google Scholar 

  16. The Council for SAM Research (1998) SAM microsatellite marker. Retrieved April 30, 2008, from http://samrc.md.shinshu-u.ac.jp/SAM_Microsatellite.htm

  17. Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600. doi:10.1016/j.tins.2004.07.005

    Article  PubMed  CAS  Google Scholar 

  18. Flood JF, Morley JE (1998) Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 22:1–20. doi:10.1016/S0149-7634(96)00063-2

    Article  PubMed  CAS  Google Scholar 

  19. Takemura M, Nakamura S, Akiguchi I et al (1993) β/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse. Am J Pathol 142:1887–1897

    PubMed  CAS  Google Scholar 

  20. Nomura Y, Okuma Y (1999) Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20:111–115. doi:10.1016/S0197-4580(99)00006-8

    Article  PubMed  CAS  Google Scholar 

  21. Kumar VB, Farr SA, Flood JF et al (2000) Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21:1769–1775. doi:10.1016/S0196-9781(00)00339-9

    Article  PubMed  CAS  Google Scholar 

  22. Poon HF, Joshi G, Sultana R et al (2004) Antisense directed at the Aβ region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Res 1018:86–96. doi:10.1016/j.brainres.2004.05.048

    Article  PubMed  CAS  Google Scholar 

  23. Poon HF, Farr SA, Banks WA et al (2005) Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Aβ region of amyloid precursor protein. Brain Res Mol Brain Res 138:8–16. doi:10.1016/j.molbrainres.2005.02.020

    Article  PubMed  CAS  Google Scholar 

  24. Banks WA, Farr SA, Morley JE et al (2007) Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer’s disease: an age-related selective uptake with reversal of learning impairment. Exp Neurol 206:248–256. doi:10.1016/j.expneurol.2007.05.005

    Article  PubMed  CAS  Google Scholar 

  25. Nomura Y, Wang BX, Qi SB et al (1989) Biochemical changes related to aging in the senescence-accelerated mouse. Exp Gerontol 24:49–55. doi:10.1016/0531-5565(89)90034-X

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Mori A (1993) Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev 71:23–30. doi:10.1016/0047-6374(93)90032-M

    Article  PubMed  CAS  Google Scholar 

  27. Butterfield DA, Howard BJ, Yatin S et al (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 94:674–678. doi:10.1073/pnas.94.2.674

    Article  PubMed  CAS  Google Scholar 

  28. Poon HF, Castegna A, Farr SA et al (2004) Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience 126:915–926. doi:10.1016/j.neuroscience.2004.04.046

    Article  PubMed  CAS  Google Scholar 

  29. Nabeshi H, Oikawa S, Inoue S et al (2006) Proteomic analysis for protein carbonyl as an indicator of oxidative damage in senescence-accelerated mice. Free Radic Res 40:1173–1181. doi:10.1080/10715760600847580

    Article  PubMed  CAS  Google Scholar 

  30. Sato E, Oda N, Ozaki N et al (1996) Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 86:105–114. doi:10.1016/0047-6374(95)01681-3

    Article  PubMed  CAS  Google Scholar 

  31. Matsugo S, Kitagawa T, Minami S et al (2000) Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci Lett 278:105–108. doi:10.1016/S0304-3940(99)00907-6

    Article  PubMed  CAS  Google Scholar 

  32. Yasui F, Ishibashi M, Matsugo S et al (2003) Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age. Neurosci Lett 350:66–68. doi:10.1016/S0304-3940(03)00827-9

    Article  PubMed  CAS  Google Scholar 

  33. Álvarez-García Ó, Vega-Naredo I, Sierra V et al (2006) Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age. Biogerontology 7:43–52. doi:10.1007/s10522-005-6041-2

    Article  PubMed  CAS  Google Scholar 

  34. Nishikawa T, Takahashi JA, Fujibayashi Y et al (1998) An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett 254:69–72. doi:10.1016/S0304-3940(98)00646-6

    Article  PubMed  CAS  Google Scholar 

  35. Fujibayashi Y, Yamamoto S, Waki A et al (1998) Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain. Neurosci Lett 254:109–112. doi:10.1016/S0304-3940(98)00667-3

    Article  PubMed  CAS  Google Scholar 

  36. Xu J, Shi C, Li Q et al (2007) Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice. J Bioenerg Biomembr 39:195–202. doi:10.1007/s10863-007-9077-y

    Article  PubMed  CAS  Google Scholar 

  37. Nakahara H, Kanno T, Inai Y et al (1998) Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic Biol Med 24:85–92. doi:10.1016/S0891-5849(97)00164-0

    Article  PubMed  CAS  Google Scholar 

  38. Gutierrez-Cuesta J, Sureda FX, Romeu M et al (2007) Chronic administration of melatonin reduces cerebral injury biomarkers in SAMP8. J Pineal Res 42:394–402. doi:10.1111/j.1600-079X.2007.00433.x

    Article  PubMed  CAS  Google Scholar 

  39. Farr SA, Poon HF, Dogrukol-Ak D et al (2003) The antioxidants α-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84:1173–1183. doi:10.1046/j.1471-4159.2003.01580.x

    Article  PubMed  CAS  Google Scholar 

  40. Poon HF, Farr SA, Thongboonkerd V et al (2005) Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int 46:159–168. doi:10.1016/j.neuint.2004.07.008

    Article  PubMed  CAS  Google Scholar 

  41. Edamatsu R, Mori A, Packer L (1995) The spin-trap N-tert-α -phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 211:847–849. doi:10.1006/bbrc.1995.1889

    Article  PubMed  CAS  Google Scholar 

  42. Yasui F, Matsugo S, Ishibashi M et al (2002) Effects of chronic acetyl-L-carnitine treatment on brain lipid hydroperoxide level and passive avoidance learning in senescence-accelerated mice. Neurosci Lett 334:177–180. doi:10.1016/S0304-3940(02)01127-8

    Article  PubMed  CAS  Google Scholar 

  43. Chan YC, Hosoda K, Tsai CJ et al (2006) Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol (Tokyo) 52:266–273. doi:10.3177/jnsv.52.266

    Article  CAS  Google Scholar 

  44. Liao JW, Hsu CK, Wang MF et al (2006) Beneficial effect of Toona sinensis Roemor on improving cognitive performance and brain degeneration in senescence-accelerated mice. Br J Nutr 96:400–407. doi:10.1079/BJN20061823

    Article  PubMed  CAS  Google Scholar 

  45. Lü L, Li J, Yew DT et al (2008) Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain. Neurochem Int 52:282–289. doi:10.1016/j.neuint.2007.06.016

    Article  PubMed  CAS  Google Scholar 

  46. Shimada A (1999) Age-dependent cerebral atrophy and cognitive dysfunction in SAMP10 mice. Neurobiol Aging 20:125–136. doi:10.1016/S0197-4580(99)00044-5

    Article  PubMed  CAS  Google Scholar 

  47. Shimada A, Keino H, Satoh M et al (2002) Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol A Biol Sci Med Sci 57:B415–B421

    PubMed  Google Scholar 

  48. Shimada A, Keino H, Satoh M et al (2003) Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse 48:198–204. doi:10.1002/syn.10209

    Article  PubMed  CAS  Google Scholar 

  49. Shimada A, Tsuzuki M, Keino H et al (2006) Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 32:1–14. doi:10.1111/j.1365-2990.2006.00632.x

    Article  PubMed  CAS  Google Scholar 

  50. Shimada A, Keino H, Kawamura N et al (2008) Limbic structures are prone to age-related impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 34:33–51

    PubMed  CAS  Google Scholar 

  51. Carter TA, Greenhall JA, Yoshida S et al (2005) Mechanisms of aging in senescence-accelerated mice. Genome Biol 6:R48. doi:10.1186/gb-2005-6-6-r48

    Article  PubMed  CAS  Google Scholar 

  52. Saitoh Y, Matsui F, Chiba Y et al (2008) Reduced expression of MAb6B4 epitopes on chondroitin sulfate proteoglycan aggrecan in perineuronal nets from cerebral cortices of SAMP10 mice: a model for age-dependent neurodegeneration. J Neurosci Res 86:1316–1323. doi:10.1002/jnr.21582

    Article  PubMed  CAS  Google Scholar 

  53. Unno K, Takabayashi F, Yoshida H et al (2007) Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 8:89–95. doi:10.1007/s10522-006-9036-8

    Article  PubMed  CAS  Google Scholar 

  54. Kishido T, Unno K, Yoshida H et al (2007) Decline in glutathione peroxidase activity is a reason for brain senescence: consumption of green tea catechin prevents the decline in its activity and protein oxidative damage in ageing mouse brain. Biogerontology 8:423–430. doi:10.1007/s10522-007-9085-7

    Article  PubMed  CAS  Google Scholar 

  55. Unno K, Takabayashi F, Kishido T et al (2004) Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol 39:1027–1034. doi:10.1016/j.exger.2004.03.033

    Article  PubMed  CAS  Google Scholar 

  56. Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 275:395–403

    PubMed  CAS  Google Scholar 

  57. Chondrogianni N, Gonos ES (2005) Proteasome dysfunction in mammalian aging: steps and factors involved. Exp Gerontol 40:931–938. doi:10.1016/j.exger.2005.09.004

    Article  PubMed  CAS  Google Scholar 

  58. Sasaki T, Unno K, Tahara S et al (2008) Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell. doi:10.1111/j.1474-9726.2008.00394.x

  59. Lucius R, Mentlein R (1995) Development of a culture system for pure rat neurons: advantages of a sandwich technique. Ann Anat 177:447–454

    PubMed  CAS  Google Scholar 

  60. Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7:1223–1233. doi:10.1089/ars.2005.7.1223

    Article  PubMed  CAS  Google Scholar 

  61. Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2:20. doi:10.1186/1742-2094-2-20

    Article  PubMed  CAS  Google Scholar 

  62. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14. doi:10.1186/1742-2094-1-14

    Article  PubMed  CAS  Google Scholar 

  63. Kumagai N, Chiba Y, Hosono M et al (2007) Involvement of pro-inflammatory cytokines and microglia in an age-associated neurodegeneration model, the SAMP10 mouse. Brain Res 1185:75–85. doi:10.1016/j.brainres.2007.09.021

    Article  PubMed  CAS  Google Scholar 

  64. Qiu Z, Sweeney DD, Netzeband JG et al (1998) Chronic interleukin-6 alters NMDA receptor-mediated membrane responses and enhances neurotoxicity in developing CNS neurons. J Neurosci 18:10445–10456

    PubMed  CAS  Google Scholar 

  65. Takeuchi H, Mizuno T, Zhang G et al (2005) Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280:10444–10454. doi:10.1074/jbc.M413863200

    Article  PubMed  CAS  Google Scholar 

  66. Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40:774–783. doi:10.1016/j.exger.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  67. Liu J (2008) The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203. doi:10.1007/s11064-007-9403-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our studies were supported in part by Grants-in-Aid for Scientific Research C (No. 14570186) and Grants-in-Aid for Exploratory Research (No. 17659118) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Sasakawa Scientific Research Grant from The Japan Science Society (No. 18-130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hosokawa.

Additional information

Special issue article in honor of Dr. Akitane Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiba, Y., Shimada, A., Kumagai, N. et al. The Senescence-accelerated Mouse (SAM): A Higher Oxidative Stress and Age-dependent Degenerative Diseases Model. Neurochem Res 34, 679–687 (2009). https://doi.org/10.1007/s11064-008-9812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9812-8

Keywords

Navigation