Skip to main content

Advertisement

Log in

In-vivo kinematics of high-flex posterior-stabilized total knee prosthesis designed for Asian populations

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine in-vivo kinematics of our developed posterior-stabilized (PS) total knee prosthesis for Asian populations in comparison with a popular high-flexion PS prosthesis.

Methods

We analyzed 62 osteoarthritic knees: 31 knees with the new PS prosthesis (group A) and 31 knees with a popular high-flexion PS prosthesis (group B). Radiographic knee images were taken during standing, lunge, and kneeling activities. The three-dimensional position and orientation of the implant components were determined using model-based shape matching techniques.

Results

Group A showed slightly greater implant flexion angles compared with knees with conventional prosthesis at maximum lunge (average: 119 vs. 110°, p = 0.001), and at maximum kneeling (121 vs. 114°, p = 0.004), although the range of motion was not significantly different. The femoral centre positions were more posterior in group A at standing, at 90° lunge, at maximum lunge (-9 and -7 mm, p = 0.004), at 90° kneeling, and at maximum kneeling (-9 vs. -7 mm, p = 0.016), and posterior translations of the femoral center were greater at 90° knee flexion postures. The femoral centre positions had a strong negative correlation with implant flexion angles at maximum lunge in group B (r = -0.893, p < 0.001), but not in group A (p = 0.242).

Conclusions

The new PS prosthesis designed for Asian knee morphology achieved flexion angles and range of motion at least comparable to that of conventional high-flexion PS prosthesis. The femoral roll-back pattern, however, is different from a conventional knee, reflecting the post/cam design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rand JA, Ilstrup DM (1991) Survivorship analysis of total knee arthroplasty. Cumulative rates of survival of 9200 total knee arthroplasties. J Bone Joint Surg Am 73(3):397–409

    CAS  PubMed  Google Scholar 

  2. Whiteside LA (1994) Cementless total knee replacement. Nine- to 11-year results and 10-year survivorship analysis. Clin Orthop Relat Res 309:185–192

    Google Scholar 

  3. Fujimoto E, Sasashige Y, Tomita T, Sasaki H, Touten Y, Fujiwara Y, Ochi M (2016) Intra-operative gaps affect outcome and postoperative kinematics in vivo following cruciate-retaining total knee arthroplasty. Int Orthop 40(1):41–49. doi:10.1007/s00264-015-2847-y

    Article  PubMed  Google Scholar 

  4. Hohmann E, Tetsworth K (2016) Do manual cutting guides for total knee arthroplasty introduce systematic error? Int Orthop 40(2):277–284. doi:10.1007/s00264-015-2963-8

    Article  PubMed  Google Scholar 

  5. Li P, Tsai TY, Li JS, Zhang Y, Kwon YM, Rubash HE, Li G (2014) Morphological measurement of the knee: race and sex effects. Acta Orthop Belg 80(2):260–268

    PubMed  Google Scholar 

  6. Mahfouz M, Abdel Fatah EE, Bowers LS, Scuderi G (2012) Three-dimensional morphology of the knee reveals ethnic differences. Clin Orthop Relat Res 470(1):172–185. doi:10.1007/s11999-011-2089-2

    Article  PubMed  Google Scholar 

  7. Leszko F, Hovinga KR, Lerner AL, Komistek RD, Mahfouz MR (2011) In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin Orthop Relat Res 469(1):95–106. doi:10.1007/s11999-010-1517-z

    Article  PubMed  Google Scholar 

  8. Devers BN, Conditt MA, Jamieson ML, Driscoll MD, Noble PC, Parsley BS (2011) Does greater knee flexion increase patient function and satisfaction after total knee arthroplasty? J Arthroplasty 26(2):178–186. doi:10.1016/j.arth.2010.02.008

    Article  PubMed  Google Scholar 

  9. Park KK, Chang CB, Kang YG, Seong SC, Kim TK (2007) Correlation of maximum flexion with clinical outcome after total knee replacement in Asian patients. J Bone Joint Surg (Br) 89(5):604–608. doi:10.1302/0301-620x.89b5.18117

    Article  CAS  Google Scholar 

  10. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res (404):7–13

  11. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB (2005) Does total knee replacement restore normal knee function? Clin Orthop Relat Res 431:157–165

    Article  Google Scholar 

  12. Meneghini RM, Russo GS, Lieberman JR (2014) Modern perceptions and expectations regarding total knee arthroplasty. J Knee Surg 27(2):93–97. doi:10.1055/s-0033-1348408

    PubMed  Google Scholar 

  13. Heyse TJ, Ries MD, Bellemans J, Goodman SB, Scott RD, Wright TM, Lipman JD, Schwarzkopf R, Figgie MP (2014) Total knee arthroplasty in patients with juvenile idiopathic arthritis. Clin Orthop Relat Res 472(1):147–154. doi:10.1007/s11999-013-3095-3

    Article  PubMed  Google Scholar 

  14. Jacobs CA, Christensen CP (2014) Factors influencing patient satisfaction two to five years after primary total knee arthroplasty. J Arthroplasty 29(6):1189–1191. doi:10.1016/j.arth.2014.01.008

    Article  PubMed  Google Scholar 

  15. Kim SJ, Bamne A, Song YD, Kang YG, Kim TK (2015) Patients still wish for key improvements after total knee arthroplasty. Knee Surg Relat Res 27(1):24–33. doi:10.5792/ksrr.2015.27.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han HS, Kang SB, Yoon KS (2007) High incidence of loosening of the femoral component in legacy posterior stabilised-flex total knee replacement. J Bone Joint Surg (Br) 89(11):1457–1461. doi:10.1302/0301-620X.89B11.19840

    Article  CAS  Google Scholar 

  17. Arnout N, Vandenneucker H, Bellemans J (2011) Posterior dislocation in total knee replacement: a price for deep flexion? Knee Surg Sports Traumatol Arthrosc 19(6):911–913. doi:10.1007/s00167-010-1258-2

    Article  PubMed  Google Scholar 

  18. Watanabe T, Ishizuki M, Muneta T, Banks SA (2013) Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament. J Arthroplasty 28(4):548–552. doi:10.1016/j.arth.2012.06.030

    Article  PubMed  Google Scholar 

  19. Oonishi H, Ueno M, Kim SC, Iwamoto M, Kyomoto M (2009) Ceramic versus cobalt-chrome femoral components; wear of polyethylene insert in total knee prosthesis. J Arthroplasty 24(3):374–382. doi:10.1016/j.arth.2007.10.021

    Article  PubMed  Google Scholar 

  20. Innocenti M, Civinini R, Carulli C, Matassi F, Villano M (2010) The 5-year results of an oxidized zirconium femoral component for TKA. Clin Orthop Relat Res 468(5):1258–1263. doi:10.1007/s11999-009-1109-y

    Article  PubMed  Google Scholar 

  21. Majima T, Yasuda K, Tago H, Aoki Y, Minami A (2008) Clinical results of posterior cruciate ligament retaining TKA with alumina ceramic condylar prosthesis: comparison to Co-Cr alloy prosthesis. Knee Surg Sports Traumatol Arthrosc 16(2):152–156. doi:10.1007/s00167-007-0435-4

    Article  PubMed  Google Scholar 

  22. Innocenti M, Carulli C, Matassi F, Carossino AM, Brandi ML, Civinini R (2014) Total knee arthroplasty in patients with hypersensitivity to metals. Int Orthop 38(2):329–333. doi:10.1007/s00264-013-2229-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Panfili E, Pierdicca L, Salvolini L, Imperiale L, Dubbini J, Giovagnoni A (2014) Magnetic resonance imaging (MRI) artefacts in hip prostheses: a comparison of different prosthetic compositions. Radiol Med 119(2):113–120. doi:10.1007/s11547-013-0315-6

    Article  PubMed  Google Scholar 

  24. Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43(6):638–649. doi:10.1109/10.495283

    Article  CAS  PubMed  Google Scholar 

  25. Nozaki H, Banks SA, Suguro T, Hodge WA (2002) Observations of femoral rollback in cruciate-retaining knee arthroplasty. Clin Orthop Relat Res 404:308–314

    Article  Google Scholar 

  26. Banks SA, Harman MK, Bellemans J, Hodge WA (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85-A(Suppl 4):64–72

    Google Scholar 

  27. Hosaka K, Saito S, Ishii T, Mori S, Sumino T, Tokuhashi Y (2011) Asian-specific total knee system: 5-14 year follow-up study. BMC Musculoskelet Disord 12:251. doi:10.1186/1471-2474-12-251

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang HT, Su JY, Wang GJ (2005) The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up. J Arthroplasty 20(5):674–679. doi:10.1016/j.arth.2004.09.053

    Article  PubMed  Google Scholar 

  29. Malik A, Salas A, Ben Ari J, Ma Y, Gonzalez Della Valle A (2010) Range of motion and function are similar in patients undergoing TKA with posterior stabilised and high-flexion inserts. Int Orthop 34(7):965–972. doi:10.1007/s00264-009-0865-3

    Article  PubMed  Google Scholar 

  30. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138. doi:10.1097/01.blo.0000063121.39522.19

    Article  Google Scholar 

  31. Lin KJ, Huang CH, Liu YL, Chen WC, Chang TW, Yang CT, Lai YS, Cheng CK (2011) Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech (Bristol, Avon) 26(8):847–852. doi:10.1016/j.clinbiomech.2011.04.002

    Article  Google Scholar 

  32. Digennaro V, Zambianchi F, Marcovigi A, Mugnai R, Fiacchi F, Catani F (2014) Design and kinematics in total knee arthroplasty. Int Orthop. doi:10.1007/s00264-013-2245-2

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Scott A. Banks, PhD for his continuous support on kinematic analysis. We also thank Bryan P. Conrad, PhD for his careful review of the manuscript and for giving us useful suggestions, and Tomoyuki Mizuguchi for his valuable advice on image processing. We received research support from Kyocera Medical and Zimmer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Muneta, T., Koga, H. et al. In-vivo kinematics of high-flex posterior-stabilized total knee prosthesis designed for Asian populations. International Orthopaedics (SICOT) 40, 2295–2302 (2016). https://doi.org/10.1007/s00264-016-3176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3176-5

Keywords

Navigation