Skip to main content

Advertisement

Log in

Intra-operative gaps affect outcome and postoperative kinematics in vivo following cruciate-retaining total knee arthroplasty

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The following investigation evaluates the effect of intra-operative gaps after posterior cruciate ligament-retaining total knee arthroplasty using two-dimensional/three-dimensional registration and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC).

Methods

Patients were divided into two groups according to their 90°-0° component gap changes using a device designed by our laboratory. The wide gap group was defined as more than 3 mm (4.3 ± 0.7 mm), and the narrow gap group was defined as less than 3 mm (1.3 ± 1.3 mm).

Results

Under non-WB (weight bearing) conditions, the wide flexion gap group (N = 10) showed a significant anterior displacement of the medial femoral condyle as compared with the narrow flexion gap group (N = 20). Despite no significant differences observed under WB conditions, both femoral condyle positions during flexion were significantly more posterior than during extension. WOMAC of the tight gap group showed worse scores for two functional items demanding knee flexion (bending to floor and getting on/off toilet).

Conclusion

The large flexion gap could influence the late rollback under non-WB conditions and better WOMAC functional scores in the flexion items. Three to four millimetre laxity at 90°–0° component gaps may be adequate and might be necessary to carry out daily life activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsumoto T, Muratsu H, Tsumura N, Mizuno K, Kuroda R, Yoshiya S, Kurosaka M (2006) Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system. J Biomech Eng 128(6):867–871

    Article  PubMed  Google Scholar 

  2. Matsumoto T, Kuroda R, Kubo S, Muratsu H, Mizuno K, Kurosaka M (2009) The intra-operative joint gap in cruciate-retaining compared with posterior-stabilised total knee replacement. J Bone Joint Surg (Br) 91(4):475–480

    Article  CAS  Google Scholar 

  3. Fujimoto E, Sasashige Y, Masuda Y, Hisatome T, Eguchi A, Masuda T, Sawa M, Nagata Y (2013) Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2704–2712

    Article  PubMed  Google Scholar 

  4. Nagai K, Muratsu H, Matsumoto T, Maruo A, Miya H, Kuroda R, Kurosaka M (2013) Influence of intra-operative parameters on postoperative early recovery of active knee flexion in posterior-stabilized total knee arthroplasty. Int Orthop 37(11):2153–2157

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takayama K, Matsumoto T, Kubo S, Muratsu H, Ishida K, Matsushita T, Kurosaka M, Kuroda R (2012) Influence of intra-operative joint gaps on post-operative flexion angle in posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(3):532–537

    Article  PubMed  Google Scholar 

  6. Matsumoto T, Mizuno K, Muratsu H, Tsumura N, Fukase N, Kubo S, Yoshiya S, Kurosaka M, Kuroda R (2007) Influence of intra-operative joint gap on post-operative flexion angle in osteoarthritis patients undergoing posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15(8):1013–1018

    Article  PubMed  Google Scholar 

  7. Fujimoto E, Sasashige Y, Tomita T, Iwamoto K, Masuda Y, Hisatome T (2013) Significant effect of the posterior tibial slope on the weight-bearing, midflexion in vivo kinematics after cruciate-retaining total knee arthroplasty. J Arthroplasty 29(12):2324–2330

    Article  PubMed  Google Scholar 

  8. Futai K, Tomita T, Yamazaki T, Tamaki M, Yoshikawa H, Sugamoto K (2011) In vivo kinematics of mobile-bearing total knee arthroplasty during deep knee bending under weight-bearing conditions. Knee Surg Sports Traumatol Arthrosc 19(6):914–920

    Article  PubMed  Google Scholar 

  9. Horiuchi H, Akizuki S, Tomita T, Sugamoto K, Yamazaki T, Shimizu N (2012) In vivo kinematic analysis of cruciate-retaining total knee arthroplasty during weight-bearing and non-weight-bearing deep knee bending. J Arthroplasty 27(6):1196–1202

    Article  PubMed  Google Scholar 

  10. Kurita M, Tomita T, Yamazaki T, Fujii M, Futai K, Shimizu N, Yoshikawa H, Sugamoto K (2012) In vivo kinematics of high-flex mobile-bearing total knee arthroplasty, with a new post-cam design, in deep knee bending motion. Int Orthop 36(12):2465–2471

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shimizu N, Tomita T, Yamazaki T, Yoshikawa H, Sugamoto K (2011) The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. J Arthroplasty 26(7):1031–1037

    Article  PubMed  Google Scholar 

  12. Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W (2008) In vivo determination of total knee arthroplasty kinematics: a multicenter analysis of an asymmetrical posterior cruciate retaining total knee arthroplasty. J Arthroplasty 23(1):41–50

    Article  PubMed  Google Scholar 

  13. Zhao Z, Wang W, Wang S, Jiang L, Zhang S, Zhao Y (2015) Femoral rotation influences dynamic alignment of the lower extremity in total knee arthroplasty. Int Orthop 39(1):55–60

    Article  PubMed  Google Scholar 

  14. Hananouchi T (2015) Sagittal gap balancing with the concept of a single radius femoral component in posterior cruciate sacrificing total knee arthroplasty with patient-specific instrumentation. Int Orthop 39(4):659–665

    Article  PubMed  Google Scholar 

  15. Keshmiri A, Springorum H, Baier C, Zeman F, Grifka J, Maderbacher G (2015) Is it possible to re-establish pre-operative patellar kinematics using a ligament-balanced technique in total knee arthroplasty? A cadaveric investigation. Int Orthop 39(3):441–448

    Article  PubMed  Google Scholar 

  16. Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Maeda D, Sato Y, Yoshikawa H, Tamura S (2005) Development of three-dimensional kinematic analysis system for artificial knee implants using X-ray fluoroscopic imaging. Nihon Hoshasen Gijutsu Gakkai zasshi 61(1):79–87

    PubMed  Google Scholar 

  17. Zuffi S, Leardini A, Catani F, Fantozzi S, Cappello A (1999) A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging 18(10):981–991

    Article  PubMed  CAS  Google Scholar 

  18. Han HS, Chang CB, Seong SC, Lee S, Lee MC (2008) Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16(4):373–377

    Article  PubMed  Google Scholar 

  19. de Jong RJ, Heesterbeek PJ, Wymenga AB (2010) A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR. Knee Surg Sports Traumatol Arthrosc 18(3):388–393

    Article  PubMed  Google Scholar 

  20. Bellamy N (1989) Pain assessment in osteoarthritis: experience with the WOMAC osteoarthritis index. Semin Arthritis Rheum 18(4 Suppl 2):14–17

    Article  PubMed  CAS  Google Scholar 

  21. Matsueda M, Gengerke TR, Murphy M, Lew WD, Gustilo RB (1999) Soft tissue release in total knee arthroplasty. Cadaver study using knees without deformities. Clin Orthop Relat Res 366:264–273

    Article  PubMed  Google Scholar 

  22. Mihalko WM, Krackow KA (1999) Posterior cruciate ligament effects on the flexion space in total knee arthroplasty. Clin Orthop Relat Res 360:243–250

    Article  PubMed  Google Scholar 

  23. Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130

    Article  PubMed  Google Scholar 

  24. Kitagawa A, Tsumura N, Chin T, Gamada K, Banks SA, Kurosaka M (2010) In vivo comparison of knee kinematics before and after high-flexion posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 25(6):964–969

    Article  PubMed  Google Scholar 

  25. Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20(6):777–783

    Article  PubMed  Google Scholar 

  26. Blunn GW, Walker PS, Joshi A, Hardinge K (1991) The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop Relat Res 273:253–260

    PubMed  Google Scholar 

  27. Swany MR, Scott RD (1993) Posterior polyethylene wear in posterior cruciate ligament-retaining total knee arthroplasty. A case study. J Arthroplasty 8(4):439–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kenji Iwami and Takeshi Fujii for their invaluable assistance with the photography.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisaku Fujimoto.

Additional information

No benefit in any form has been received or will be received from a commercial party directly related to the subject of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, E., Sasashige, Y., Tomita, T. et al. Intra-operative gaps affect outcome and postoperative kinematics in vivo following cruciate-retaining total knee arthroplasty. International Orthopaedics (SICOT) 40, 41–49 (2016). https://doi.org/10.1007/s00264-015-2847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2847-y

Keywords

Navigation