Skip to main content

Advertisement

Log in

ImmunoPET imaging of Trop2 expression in solid tumors with nanobody tracers

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The high expression of the transmembrane glycoprotein trophoblast cell-surface antigen 2 (Trop2) was strongly associated with the progression of solid tumors, including pancreatic and gastric cancers. Our study aimed to construct Trop2-specific immuno-positron emission tomography (immunoPET) probes and assess the diagnostic abilities in preclinical pancreatic and gastric cancer models.

Methods

The expression of Trop2 in pancreatic cancer was determined by single-cell sequencing and immunohistochemistry on tissue microarray (TMA). Flow cytometry was used to screen the expression of Trop2 in pancreatic cancer cell lines. Two nanobodies (i.e., RTD98 and RTD01) targeting Trop2 were developed and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) to construct immunoPET imaging probes. The agents were researched in cell-derived pancreatic and patient-derived gastric cancer models expressing varying Trop2.

Results

Single-cell sequencing results showed high expression of Trop2 in pancreatic ductal cells as well as acinar cells and immunohistochemical staining of TMA from pancreatic cancers showed significantly higher expression of Trop2 in cancerous than in paracancerous tissues. ImmunoPET utilizing [68Ga]Ga-NOTA-RTD98 could clearly delineate subcutaneous tumors, both in cell-derived pancreatic cancer models and patient-derived gastric cancer models, superior to imaging using [18F]-FDG or a non-specific probe [68Ga]Ga-NOTA-RTD161. Another probe with improved pharmacokinetics targeting Trop2, [68Ga]Ga-NOTA-RTD01, was further prepared and showed advantageous diagnostic capabilities in preclinical pancreatic cancer models.

Conclusion

In the work, we reported two nanobody tracers targeting human Trop2 which may facilitate better use of Trop2-targeted therapeutics by noninvasively displaying expression dynamics of the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original data of the work can be obtained from Prof. Weijun Wei upon rational request.

References

  1. Stein R, Basu A, Chen S, Shih LB, Goldenberg DM. Specificity and properties of MAb RS7-3G11 and the antigen defined by this pancarcinoma monoclonal antibody. Int J Cancer. 1993;55:938–46. https://doi.org/10.1002/ijc.2910550611.

    Article  CAS  Google Scholar 

  2. Stein R, Basu A, Goldenberg DM, Lloyd KO, Mattes MJ. Characterization of cluster 13: the epithelial/carcinoma antigen recognized by MAb RS7. Int J Cancer Suppl. 1994;8:98–102. https://doi.org/10.1002/ijc.2910570721.

    Article  CAS  PubMed  Google Scholar 

  3. Lipinski M, Parks DR, Rouse RV, Herzenberg LA. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci U S A. 1981;78:5147–50. https://doi.org/10.1073/pnas.78.8.5147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fornaro M, Dell’Arciprete R, Stella M, Bucci C, Nutini M, Capri MG, et al. Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas. Int J Cancer. 1995;62:610–8. https://doi.org/10.1002/ijc.2910620520.

    Article  CAS  PubMed  Google Scholar 

  5. Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989–9006. https://doi.org/10.18632/oncotarget.25615.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fong D, Moser P, Krammel C, Gostner JM, Margreiter R, Mitterer M, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br J Cancer. 2008;99:1290–5. https://doi.org/10.1038/sj.bjc.6604677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muhlmann G, Spizzo G, Gostner J, Zitt M, Maier H, Moser P, et al. TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol. 2009;62:152–8. https://doi.org/10.1136/jcp.2008.060590.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng P, Chen MB, Zhou LN, Tang M, Liu CY, Lu PH. Impact of TROP2 expression on prognosis in solid tumors: A Systematic Review and Meta-analysis. Sci Rep. 2016;6:33658. https://doi.org/10.1038/srep33658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trerotola M, Ganguly KK, Fazli L, Fedele C, Lu H, Dutta A, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318–28. https://doi.org/10.18632/oncotarget.3960.

    Article  PubMed Central  Google Scholar 

  10. Wang J, Day R, Dong Y, Weintraub SJ, Michel L. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers. Mol Cancer Ther. 2008;7:280–5. https://doi.org/10.1158/1535-7163.MCT-07-2003.

    Article  CAS  PubMed  Google Scholar 

  11. Park W, Chawla A, O’Reilly EM. Pancreatic Cancer: A Review. JAMA. 2021;326:851–62. https://doi.org/10.1001/jama.2021.13027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toft J, Hadden WJ, Laurence JM, Lam V, Yuen L, Janssen A, et al. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy. Eur J Radiol. 2017;92:17–23. https://doi.org/10.1016/j.ejrad.2017.04.009.

    Article  Google Scholar 

  13. Wang XY, Yang F, Jin C, Fu DL. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. World J Gastroenterol. 2014;20:15580–9. https://doi.org/10.3748/wjg.v20.i42.15580.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: Concept, Design, and Applications. Chem Rev. 2020;120:3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen W, Li M, Younis MH, Barnhart TE, Jiang D, Sun T, et al. ImmunoPET of trophoblast cell-surface antigen 2 (Trop-2) expression in pancreatic cancer. Eur J Nucl Med Mol Imaging. 2022;49:861–70. https://doi.org/10.1007/s00259-021-05563-1.

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Liu J, Yang X, Yang Q, Huang W, Zhang M, et al. Theranostic application of (64)Cu/(177)Lu-labeled anti-Trop2 monoclonal antibody in pancreatic cancer tumor models. Eur J Nucl Med Mol Imaging. 2022. https://doi.org/10.1007/s00259-022-05954-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao H, Wang C, Yang Y, Sun Y, Wei W, Wang C, et al. ImmunoPET imaging of human CD8(+) T cells with novel (68)Ga-labeled nanobody companion diagnostic agents. J Nanobiotechnology. 2021;19:42. https://doi.org/10.1186/s12951-021-00785-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Chen Y, Hou YN, Liu Q, Zhang D, Zhao H, et al. ImmunoPET imaging of multiple myeloma with [(68)Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging. 2021;48:2749–60. https://doi.org/10.1007/s00259-021-05218-1.

    Article  CAS  PubMed  Google Scholar 

  19. Wei W, Zhang Y, Zhang D, Liu Q, An S, Chen Y, et al. Annotating BCMA Expression in Multiple Myelomas. Mol Pharm. 2022;19:3492–501. https://doi.org/10.1021/acs.molpharmaceut.1c00628.

    Article  CAS  PubMed  Google Scholar 

  20. An S, Zhang D, Zhang Y, Wang C, Shi L, Wei W, et al. GPC3-targeted immunoPET imaging of hepatocellular carcinomas. Eur J Nucl Med Mol Imaging. 2022;49:2682–92. https://doi.org/10.1007/s00259-022-05723-x.

    Article  CAS  Google Scholar 

  21. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  CAS  PubMed Central  Google Scholar 

  22. Abugessaisa I, Noguchi S, Bottcher M, Hasegawa A, Kouno T, Kato S, et al. SCPortalen: human and mouse single-cell centric database. Nucleic Acids Res. 2018;46:D781–7. https://doi.org/10.1093/nar/gkx949.

    Article  CAS  PubMed  Google Scholar 

  23. Tarantino P, CarmagnaniPestana R, Corti C, Modi S, Bardia A, Tolaney SM, et al. Antibody-drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 2022;72:165–82. https://doi.org/10.3322/caac.21705.

    Article  PubMed  Google Scholar 

  24. TROP2 ADC Intrigues in NSCLC. Cancer Discov. 2021;11:OF5. https://doi.org/10.1158/2159-8290.CD-NB2021-0314.

  25. Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang Y, et al. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer. Pharmacol Ther. 2022;239: 108296. https://doi.org/10.1016/j.pharmthera.2022.108296.

    Article  CAS  PubMed  Google Scholar 

  26. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157:220–33. https://doi.org/10.1111/j.1476-5381.2009.00190.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ackaert C, Smiejkowska N, Xavier C, Sterckx YGJ, Denies S, Stijlemans B, et al. Immunogenicity Risk Profile of Nanobodies. Front Immunol. 2021;12: 632687. https://doi.org/10.3389/fimmu.2021.632687.

    Article  CAS  PubMed Central  Google Scholar 

  28. Krasniqi A, D’Huyvetter M, Devoogdt N, Frejd FY, Sorensen J, Orlova A, et al. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. J Nucl Med. 2018;59:885–91. https://doi.org/10.2967/jnumed.117.199901.

    Article  CAS  PubMed  Google Scholar 

  29. Pang Q, Chen Y, Mukhtar H, Xiong J, Wang X, Xu T, et al. Camelization of a murine single-domain antibody against aflatoxin B(1) and its antigen-binding analysis. Mycotoxin Res. 2022;38:51–60. https://doi.org/10.1007/s12550-021-00433-z.

    Article  CAS  PubMed Central  Google Scholar 

  30. Harmsen MM, van Solt CB, van Zijderveld-van Bemmel AM, Niewold TA, van Zijderveld FG. Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. Appl Microbiol Biotechnol. 2006;72:544–51. https://doi.org/10.1007/s00253-005-0300-7.

    Article  CAS  Google Scholar 

  31. Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, et al. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization. Int J Biol Macromol. 2023;247: 125733. https://doi.org/10.1016/j.ijbiomac.2023.125733.

    Article  CAS  PubMed  Google Scholar 

  32. Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, et al. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging. 2021;48:1371–89. https://doi.org/10.1007/s00259-020-05094-1.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Z, Devoogdt N, Zalutsky MR, Vaidyanathan G. An Efficient Method for Labeling Single Domain Antibody Fragments with (18)F Using Tetrazine- Trans-Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjug Chem. 2018;29:4090–103. https://doi.org/10.1021/acs.bioconjchem.8b00699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Z, Meshaw R, Zalutsky MR, Vaidyanathan G. Site-Specific and Residualizing Linker for (18)F Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med. 2021;62:1624–30. https://doi.org/10.2967/jnumed.120.261446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xenaki KT, Dorrestijn B, Muns JA, Adamzek K, Doulkeridou S, Houthoff H, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics. 2021;11:5525–38. https://doi.org/10.7150/thno.57510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee W, Bobba KN, Kim JY, Park H, Bhise A, Kim W, et al. Correction: A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. J Mater Chem B. 2021;9:6092. https://doi.org/10.1039/d1tb90111g.

    Article  CAS  PubMed  Google Scholar 

  37. Peplau E, De Rose F, Reder S, Mittelhauser M, Scafetta G, Schwaiger M, et al. Development of a Chimeric Antigen-Binding Fragment Directed Against Human Galectin-3 and Validation as an Immuno-Positron Emission Tomography Tracer for the Sensitive In Vivo Imaging of Thyroid Cancer. Thyroid. 2020;30:1314–26. https://doi.org/10.1089/thy.2019.0670.

    Article  CAS  Google Scholar 

  38. Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, et al. Sacituzumab Govitecan (IMMU-132), an Anti-Trop-2/SN-38 Antibody-Drug Conjugate: Characterization and Efficacy in Pancreatic, Gastric, and Other Cancers. Bioconjug Chem. 2015;26:919–31. https://doi.org/10.1021/acs.bioconjchem.5b00223.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Key Research and Development Program of China (Grant No. 2021YFA0910000), and the National Natural Science Foundation of China (Grant No. 82372014, 82171972, and 82001878).

Author information

Authors and Affiliations

Authors

Contributions

W. Wei, J. Liu, and G. Huang collaboratively conceived and designed the project. W. Huang and C. Liang performed the experiments with the help of S. An, Y. Zhang, D. Zhang. W. Huang and C. Liang wrote most of the manuscript, while others contributed to the writing. J. Cui provided support in TMA analysis. G. Huang and Z. Bao provided inputs in the initial design of the project and revised the manuscript. W. Wei and J. Liu supervised the study and revised and finalized the manuscript.

Corresponding authors

Correspondence to Weijun Wei or Jianjun Liu.

Ethics declarations

Conflict of interest

W. Wei, W. Huang, and J. Liu are co-inventors on a provisional patent application encompassing the technology reported in the manuscript. W. Wei is a consultant of Alpha Nuclide (Ningbo) Medical Technology Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16031 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Liang, C., Zhang, Y. et al. ImmunoPET imaging of Trop2 expression in solid tumors with nanobody tracers. Eur J Nucl Med Mol Imaging 51, 380–394 (2024). https://doi.org/10.1007/s00259-023-06454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06454-3

Keywords

Navigation