Skip to main content
Log in

Theranostic application of 64Cu/177Lu-labeled anti-Trop2 monoclonal antibody in pancreatic cancer tumor models

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This article has been updated

Abstract

Purpose

Pancreatic cancer is a malignant tumor with a high degree of malignancy, strong heterogeneity, and high lethality. Trop2 is a transmembrane glycoprotein associated with the occurrence, development, and poor prognosis of pancreatic cancer. This study aims to develop 64Cu/177Lu-labeled anti-Trop2 monoclonal antibody (hIMB1636) for positron emission tomography (PET) imaging and radioimmunotherapy (RIT) application in pancreatic cancer tumor models.

Methods

The binding kinetics of hIMB1636 to Trop2 antigen was measured by Biolayer interferometry (BLI). Western blotting was used to screen the Trop2 expression of pancreatic cancer cell lines. Flow cytometry and cell immunofluorescence were used to evaluate the binding ability of hIMB1636 and Trop2 on the cell surface. hIMB1636 were conjugated with p-SCN-Bn-NOTA (NOTA) and DOTA-NHS-ester (DOTA) for 64Cu and 177Lu radiolabeling respectively. ImmunoPET imaging and RIT studies were performed using 64Cu-NOTA-hIMB1636 and 177Lu-DOTA-hIMB1636 in subcutaneous pancreatic cancer tumor models.

Results

hIMB1636 had a strong binding affinity to Trop2 according to the results of BLI. The T3M-4 cell line showed the strongest expression of Trop2 and specific binding ability of hIMB1636 according to the results of Western blotting, flow cytometry, and cell immunofluorescence. The radiochemical purity of 64Cu-NOTA-hIMB1636 and 177Lu-DOTA-hIMB1636 exceeded 95%. PET imaging showed gradually an accumulation of 64Cu-NOTA-hIMB1636 in T3M-4 tumor models. The maximum tumor uptake was 8.95 ± 1.07%ID/g (n = 4) at 48 h post injection (p.i.), which had significant differences with T3M-4-blocked and PaTu8988-negative groups (P < 0.001). The high-177Lu-hIMB1636 group demonstrated the strongest tumor suppression with standardized tumor volume about 94.24 ± 14.62% (n = 5) at 14 days p.i., significantly smaller than other groups (P < 0.05). Ex vivo biodistribution and histological staining verified the in vivo PET imaging and RIT results.

Conclusions

This study demonstrated that 64Cu/177Lu-labeled hIMB1636 could noninvasively evaluate the expression level of Trop2 and inhibit the Trop2-overexpressed tumor growth in pancreatic cancer tumor models. Further clinical evaluation and translation of Trop2-targeted drug may be of great help in the stratification and management of pancreatic cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 15 September 2022

    The article was modified to change the order of the corresponding authors in the corresponding authors field.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA A Cancer J Clin. 2021;71:7–33. https://doi.org/10.3322/caac.21654.

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  3. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–705. https://doi.org/10.3748/wjg.v22.i44.9694.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oberstein PE, Olive KP. Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol. 2013;6:321–37. https://doi.org/10.1177/1756283X13478680.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu M, Shu J. Multimodal molecular imaging: current status and future directions. Contrast Media Mol Imaging. 2018;2018:1382183. https://doi.org/10.1155/2018/1382183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Avril S, Muzic RF Jr, Plecha D, Traughber BJ, Vinayak S, Avril N. (1)(8)F-FDG PET/CT for monitoring of treatment response in breast cancer. J Nucl Med. 2016;57(Suppl 1):34S-S39. https://doi.org/10.2967/jnumed.115.157875.

    Article  CAS  PubMed  Google Scholar 

  7. Singhi AD, Koay EJ, Chari ST, Maitra A. Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology. 2019;156:2024–40. https://doi.org/10.1053/j.gastro.2019.01.259.

    Article  PubMed  Google Scholar 

  8. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120:3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippi L, Nervi C, Proietti I, Pirisino R, Potenza C, Martelli O, et al. Molecular imaging in immuno-oncology: current status and translational perspectives. Expert Rev Mol Diagn. 2020;20:1199–211. https://doi.org/10.1080/14737159.2020.1854090.

    Article  CAS  PubMed  Google Scholar 

  10. Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989–9006. https://doi.org/10.18632/oncotarget.25615.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zeng P, Chen MB, Zhou LN, Tang M, Liu CY, Lu PH. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci Rep. 2016;6:33658. https://doi.org/10.1038/srep33658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fong D, Moser P, Krammel C, Gostner JM, Margreiter R, Mitterer M, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br J Cancer. 2008;99:1290–5. https://doi.org/10.1038/sj.bjc.6604677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li C, Yang Q, Chen Z, Qiu Y, Du Y, Wang R, et al. Noninvasive evaluation of multidrug resistance via imaging of ABCG2/BCRP multidrug transporter in lung cancer xenograft models. Mol Pharm. 2022. https://doi.org/10.1021/acs.molpharmaceut.1c00939.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Hernandez R, Rao J, Yin L, Qu Y, Wu J, et al. Targeting CD146 with a 64Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas. Proc Natl Acad Sci U S A. 2015;112:E6525–34. https://doi.org/10.1073/pnas.1502648112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang L, Li C, Rosenkrans ZT, Huo N, Chen Z, Ehlerding EB, et al. CD38-targeted theranostics of lymphoma with (89)Zr/(177)Lu-labeled daratumumab. Adv Sci (Weinh). 2021;8:2001879. https://doi.org/10.1002/advs.202001879.

    Article  CAS  Google Scholar 

  16. Kang L, Li C, Rosenkrans ZT, Engle JW, Wang R, Jiang D, et al. Noninvasive evaluation of CD20 expression using (64)Cu-Labeled F(ab’)2 fragments of obinutuzumab in lymphoma. J Nucl Med. 2021;62:372–8. https://doi.org/10.2967/jnumed.120.246595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, et al. Immuno-PET imaging and radioimmunotherapy of 64Cu-/177lu-labeled anti-EGFR antibody in esophageal squamous cell carcinoma model. J Nucl Med. 2016;57:1105–11. https://doi.org/10.2967/jnumed.115.167155.

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Kang L, Fan K, Ferreira CA, Becker KV, Huo N, et al. ImmunoPET of CD146 in orthotopic and metastatic breast cancer models. Bioconjug Chem. 2021;32:1306–14. https://doi.org/10.1021/acs.bioconjchem.0c00649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int. 2017;17:68. https://doi.org/10.1186/s12935-017-0437-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15:333–48. https://doi.org/10.1038/s41575-018-0005-x.

    Article  PubMed  Google Scholar 

  21. Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer. 2015;6:84–105. https://doi.org/10.18632/genesandcancer.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lenart S, Lenart P, Smarda J, Remsik J, Soucek K, Benes P. Trop2: jack of all trades, master of none. Cancers (Basel). 2020;12:3328. https://doi.org/10.3390/cancers12113328.

    Article  CAS  Google Scholar 

  23. Pavone G, Motta L, Martorana F, Motta G, Vigneri P. A new kid on the block: sacituzumab govitecan for the treatment of breast cancer and other solid tumors. Molecules. 2021;26:7294. https://doi.org/10.3390/molecules26237294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384:1529–41. https://doi.org/10.1056/NEJMoa2028485.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, England CG, Ehlerding EB, Kutyreff CJ, Engle JW, Jiang D, et al. ImmunoPET imaging of CD38 expression in hepatocellular carcinoma using 64Cu-labeled daratumumab. Am J Transl Res. 2019;11:6007–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen W, Li M, Younis MH, Barnhart TE, Jiang D, Sun T, et al. ImmunoPET of trophoblast cell-surface antigen 2 (Trop-2) expression in pancreatic cancer. Eur J Nucl Med Mol Imaging. 2022;49:861–70. https://doi.org/10.1007/s00259-021-05563-1.

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Li D, Liu S, Liu R, Yuan H, Krasnoperov V, et al. Small-animal PET imaging of pancreatic cancer xenografts using a 64Cu-labeled monoclonal antibody, MAb159. J Nucl Med. 2015;56:908–13. https://doi.org/10.2967/jnumed.115.155812.

    Article  CAS  PubMed  Google Scholar 

  28. Sugyo A, Tsuji AB, Sudo H, Nagatsu K, Koizumi M, Ukai Y, et al. Preclinical evaluation of (8)(9)Zr-labeled human antitransferrin receptor monoclonal antibody as a PET probe using a pancreatic cancer mouse model. Nucl Med Commun. 2015;36:286–94. https://doi.org/10.1097/MNM.0000000000000245.

    Article  CAS  PubMed  Google Scholar 

  29. Lamberts LE, Menke-van der Houven van Oordt CW, ter Weele EJ, Bensch F, Smeenk MM, Voortman J, et al. ImmunoPET with anti-mesothelin antibody in patients with pancreatic and ovarian cancer before anti-mesothelin antibody-drug conjugate treatment. Clin Cancer Res. 2016;22:1642–52. https://doi.org/10.1158/1078-0432.CCR-15-1272.

    Article  CAS  PubMed  Google Scholar 

  30. Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26:919–31. https://doi.org/10.1021/acs.bioconjchem.5b00223.

    Article  CAS  PubMed  Google Scholar 

  31. Mao Y, Wang X, Zheng F, Wang C, Tang Q, Tang X, et al. The tumor-inhibitory effectiveness of a novel anti-Trop2 Fab conjugate in pancreatic cancer. Oncotarget. 2016;7:24810–23. https://doi.org/10.18632/oncotarget.8529.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nishimura T, Mitsunaga M, Sawada R, Saruta M, Kobayashi H, Matsumoto N, et al. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody. Cancer Med. 2019;8:7781–92. https://doi.org/10.1002/cam4.2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang CH, Gupta P, Michel R, Loo M, Wang Y, Cardillo TM, et al. Ranpirnase (frog RNase) targeted with a humanized, internalizing, anti-Trop-2 antibody has potent cytotoxicity against diverse epithelial cancer cells. Mol Cancer Ther. 2010;9:2276–86. https://doi.org/10.1158/1535-7163.MCT-10-0338.

    Article  CAS  PubMed  Google Scholar 

  34. Govindan SV, Stein R, Qu Z, Chen S, Andrews P, Ma H, et al. Preclinical therapy of breast cancer with a radioiodinated humanized anti-EGP-1 monoclonal antibody: advantage of a residualizing iodine radiolabel. Breast Cancer Res Treat. 2004;84:173–82. https://doi.org/10.1023/B:BREA.0000018417.02580.ef.

    Article  CAS  PubMed  Google Scholar 

  35. Goldsmith SJ. Targeted radionuclide therapy: a historical and personal review. Semin Nucl Med. 2020;50:87–97. https://doi.org/10.1053/j.semnuclmed.2019.07.006.

    Article  PubMed  Google Scholar 

  36. Sheridan C. Ablynx’s nanobody fragments go places antibodies cannot. Nat Biotechnol. 2017;35:1115–7. https://doi.org/10.1038/nbt1217-1115.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Beijing Municipality (Grant numbers 7224365 and 7202133), the National Natural Science Foundation of China (Grant numbers 82171970, 81871385, 81971642, 82104052, and 82001860), the Beijing Science Foundation for Distinguished Young Scholars (Grant number JQ21025), the Peking University Medicine Fund of Fostering Young Scholars’ Scientific & Technological Innovation (Grant number BMU2022PY006), the Clinical Medicine Plus X-Youth Scholars Project of Peking University (Grant number PKU2020LCXQ023), the CAMS Innovation Fund for Medical Sciences (CIFMS, Grant number 2021-I2M-1-026), and the Natural Science Foundation of Shandong Province (Grant number ZR2020QH201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Gong, Qingfang Miao, Lei Kang or Jigang Yang.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Theragnostic.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, J., Yang, X. et al. Theranostic application of 64Cu/177Lu-labeled anti-Trop2 monoclonal antibody in pancreatic cancer tumor models. Eur J Nucl Med Mol Imaging 50, 168–183 (2022). https://doi.org/10.1007/s00259-022-05954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05954-y

Keywords

Navigation