Skip to main content

Advertisement

Log in

Axial T1-weighted imaging of the lumbar spine: a redundancy or an asset?

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the diagnostic value of axial T1-weighted imaging for patients suffering from lower back pain.

Materials and methods

In this retrospective study, 100 consecutive lumbar spine MRIs obtained in patients with chronic low back pain were reviewed in two sessions: First, readers viewed core sequences (sagittal T1-weighted, STIR and T2-weighted, and axial T2-weighted) with axial T1-weighted sequences, and second, readers viewed cores sequences alone. Readers recorded the presence of disc degeneration, nerve root compromise, facet joint arthritis, and stenosis at each lumbar spine level as well as the presence of lipoma of filum terminale (LFT), spondylolisthesis, transitional vertebrae, and fractures. The McNemar, Wilcoxon signed-rank, and student T tests were utilized.

Results

For 100 studies, 5 spine levels were evaluated (L1–L2 through L5–S1). There were cases of disc disease (444/500 bulges, 56/500 herniations), nerve root compromise (1/500 nerve enlargement, 36/500 contact only, 20/500 displacement or compression), facet arthritis (438/500), stenosis (58/500 central canal, 64/500 lateral recess, 137/500 neuroforaminal), 6/100 LFTs, and other abnormalities (58/500 spondylolisthesis, 10/100 transitional vertebrae, 10/500 fracture/spondylolysis). There was no difference in diagnostic performance between the interpretation sessions (with and without axial T1-weighted imaging) at any level (p > 0.05), although four small additional LFTs were identified with axial T1-weighted imaging availability.

Conclusion

There was no clinically significant difference in the interpretation of lumbar spine MRI viewed with and without axial T1-weighted imaging, suggesting that the axial T1-weighted sequence does not add diagnostic value to routine lumbar spine MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang L, Ye H, Li Z, Lu C, Ye J, Liao M, et al. Epidemiological trends of low back pain at the global, regional, and national levels. Eur Spine J. 2022;31(4):953–62.

    Article  CAS  PubMed  Google Scholar 

  2. Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet. 2017;389(10070):736–47.

    Article  PubMed  Google Scholar 

  3. Hoy D, Bain C, Williams G, March L, Brooks P, Blyth F, et al. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012;64(6):2028–37.

    Article  PubMed  Google Scholar 

  4. Chou R, Qaseem A, Owens DK, Shekelle P. Clinical Guidelines Committee of the American College of Physicians. Diagnostic imaging for low back pain: advice for high-value health care from the American College of Physicians. Ann Intern Med. 2011;154(3):181–9.

    Article  PubMed  Google Scholar 

  5. Deyo RA, Mirza SK, Turner JA, Martin BI. Overtreating chronic back pain: time to back off? J Am Board Fam Med. 2009;22(1):62–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Essman M, Lin CY. The role of exercise in treating low back pain. Curr Sports Med Rep. 2022;21(8)

  7. Patel ND, Broderick DF, Burns J, Deshmukh TK, Fries IB, Harvey HB, et al. ACR Appropriateness criteria low back pain. J Am Coll Radiol. 2016;13(9):1069–78.

    Article  PubMed  Google Scholar 

  8. Czervionke LF, Berquist TH. Imaging of the spine. Techniques of MR imaging. Orthop Clin North Am. 1997;28(4):583–616.

    Article  CAS  PubMed  Google Scholar 

  9. Zanchi F, Richard R, Hussami M, Monier A, Knebel J, Omoumi P. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence? Eur Radiol. 2020;30(5):2583–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pfirrmann CWA, Dora C, Schmid MR, Zanetti M, Hodler J, Boos N. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology. 2004;230(2):583–8.

    Article  PubMed  Google Scholar 

  11. Carrino JA, Lurie JD, Tosteson ANA, Tosteson TD, Carragee EJ, Kaiser J, et al. Lumbar spine: reliability of MR imaging findings. Radiology. 2009;250(1):161–70.

    Article  PubMed  Google Scholar 

  12. Miskin N, Gaviola GC, Huang RY, Kim CJ, Lee TC, Small KM, et al. Intra- and intersubspecialty variability in lumbar spine MRI interpretation: a multireader study comparing musculoskeletal radiologists and neuroradiologists. Curr Probl Diagn Radiol. 2020;49(3):182–7.

    Article  PubMed  Google Scholar 

  13. Li Y, Fredrickson V, Resnick DK. How should we grade lumbar disc herniation and nerve root compression? A systematic review. Clin Orthop Relat Res. 2015;473(6):1896–902.

    Article  PubMed  Google Scholar 

  14. Doktor K, Jensen TS, Christensen HW, Fredberg U, Kindt M, Boyle E, et al. Degenerative findings in lumbar spine MRI: an inter-rater reliability study involving three raters. Chiropr Man Therap. 2020;28(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuittinen P, Sipola P, Aalto TJ, Määttä S, Parviainen A, Saari T, et al. Correlation of lateral stenosis in MRI with symptoms, walking capacity and EMG findings in patients with surgically confirmed lateral lumbar spinal canal stenosis. BMC Musculoskelet Disord. 2014;23(15):247.

    Article  Google Scholar 

  16. Lee S, Lee JW, Yeom JS, Kim K, Kim H, Chung SK, et al. A practical MRI grading system for lumbar foraminal stenosis. AJR Am J Roentgenol. 2010;194(4):1095–8.

    Article  PubMed  Google Scholar 

  17. Sayah A, Jay AK, Toaff JS, Makariou EV, Berkowitz F. Effectiveness of a rapid lumbar spine MRI protocol using 3D T2-weighted SPACE imaging versus a standard protocol for evaluation of degenerative changes of the lumbar spine. AJR Am J Roentgenol. 2016;207(3):614–20.

    Article  PubMed  Google Scholar 

  18. Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part 1, techniques and normal age-related appearances. Am J Roentgenol. 2011;197(6):1298–308.

    Article  Google Scholar 

  19. Vargas MI, Boto J, Meling TR. Imaging of the spine and spinal cord: an overview of magnetic resonance imaging (MRI) techniques. Rev Neurol (Paris). 2021 May;177(5):451–8.

    Article  CAS  PubMed  Google Scholar 

  20. ACR–ASNR–SABI–SSR. Practice parameter for the performance of magnetic resonance imaging (MRI) of the adult spine [Internet]. c2023. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Adult-Spine.pdf. Accessed November 2023.

  21. Cools MJ, Al-Holou WN, Stetler WRJ, Wilson TJ, Muraszko KM, Ibrahim M, et al. Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr. 2014;13(5):559–67.

    Article  PubMed  Google Scholar 

  22. Al-Omari M, Eloqayli HM, Qudseih HM, Al-shinag M. Isolated lipoma of filum terminale in adults: MRI findings and clinical correlation. J Med Imaging Radiat Oncol. 2011;55(3):286–90.

    Article  PubMed  Google Scholar 

  23. Winklhofer S, Held U, Burgstaller JM, Finkenstaedt T, Bolog N, Ulrich N, et al. Degenerative lumbar spinal canal stenosis: intra- and inter-reader agreement for magnetic resonance imaging parameters. Eur Spine J. 2017;26(2):353–61.

    Article  PubMed  Google Scholar 

  24. Fu MC, Buerba RA, Long WD3, Blizzard DJ, Lischuk AW, Haims AH, et al. Interrater and intrarater agreements of magnetic resonance imaging findings in the lumbar spine: significant variability across degenerative conditions. Spine J. 2014;14(10):2442–8.

    Article  PubMed  Google Scholar 

  25. Sherwood D, Haring RS, Schirmer D, Modic M. The interrater reliability of Modic changes among a potential basivertebral nerve ablation population: why AC1 may be preferred to kappa. J Orthop Res. 2023;41(5):1123–30.

    Article  PubMed  Google Scholar 

  26. Banitalebi H, Espeland A, Anvar M, Hermansen E, Hellum C, Brox JI, et al. Reliability of preoperative MRI findings in patients with lumbar spinal stenosis. BMC Musculoskelet Disord. 2022;23(1):51–4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaliya-Perumal A, Ariputhiran-Tamilselvam S, Luo C, Thiagarajan S, Selvam U, Sumathi-Edirolimanian R. Revalidating Pfirrmann’s magnetic resonance image-based grading of lumbar nerve root compromise by calculating reliability among orthopaedic residents. Clin Orthop Surg. 2018;10(2):210–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weber C, Rao V, Gulati S, Kvistad KA, Nygaard ØP, Lønne G. Inter- and intraobserver agreement of morphological grading for central lumbar spinal stenosis on magnetic resonance imaging. Global Spine J. 2015;5(5):406–10.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Brien JJ, Stormann J, Roche K, Cabral-Goncalves I, Monks A, Hallett D, et al. Optimizing MRI logistics: focused process improvements can increase throughput in an Academic Radiology Department. Am J Roentgenol. 2017;208(2):W38–44.

    Article  Google Scholar 

  30. Koontz NA. Wiggins RH3, Mills MK, McLaughlin MS, Pigman EC, Anzai Y, et al. Less is more: efficacy of rapid 3D-T2 SPACE in ED patients with acute atypical low back pain. Acad Radiol. 2017;24(8):988–94.

    Article  PubMed  Google Scholar 

  31. Sollmann N, Rüther C, Schön S, Zimmer C, Baum T, Kirschke JS. Implementation of a sagittal T2-weighted DIXON turbo spin-echo sequence may shorten MRI acquisitions in the emergency setting of suspected spinal bleeding. Eur Radiol Exp. 2021;5(1):19–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang S, Lassalle L, Mekki A, Appert G, Rannou F, Nguyen C, et al. Can T2-weighted Dixon fat-only images replace T1-weighted images in degenerative disc disease with Modic changes on lumbar spine MRI? Eur Radiol. 2021;31(12):9380–9.

    Article  CAS  PubMed  Google Scholar 

  33. Saifuddin A, Rajakulasingam R, Santiago R, Siddiqui M, Khoo M, Pressney I. Comparison of lumbar degenerative disc disease using conventional fast spin echo T(2)W MRI and T(2) fast spin echo dixon sequences. Br J Radiol. 2021;94(1121):20201438.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rafiee F, Mehan WA, Rincon S, Rohatgi S, Rapalino O, Buch K. Diagnostic utility of 3D gradient-echo MR imaging sequences through the filum compared with spin-echo T1 in children with concern for tethered cord. AJNR Am J Neuroradiol. 2023;44(3):323–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chazen JL, Tan ET, Fiore J, Nguyen JT, Sun S, Sneag DB. Rapid lumbar MRI protocol using 3D imaging and deep learning reconstruction. Skeletal Radiol. 2023;52(7):1331–8.

    Article  PubMed  Google Scholar 

  36. Fujiwara M, Kashiwagi N, Matsuo C, Watanabe H, Kassai Y, Nakamoto A, et al. Ultrafast lumbar spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol. Skeletal Radiol. 2023;52(2):233–41.

    Article  PubMed  Google Scholar 

  37. Oei MW, Evens AL, Bhatt AA, Garner HW. Imaging of the aging spine. Radiol Clin North Am. 2022;60(4):629–40.

    Article  PubMed  Google Scholar 

  38. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. Am J Neuroradiol. 2015;36(4):811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosman DA, Duszak R, Wang W, Hughes DR, Rosenkrantz AB. Changing utilization of noninvasive diagnostic imaging over 2 decades: an examination family–focused analysis of medicare claims using the Neiman imaging types of service categorization system. Am J Roentgenol. 2018;210(2):364–8.

    Article  Google Scholar 

  40. D’Aprile P, Nasuto M, Tarantino A, Cornacchia S, Guglielmi G, Jinkins JR. Magnetic resonance imaging in degenerative disease of the lumbar spine: fat saturation technique and contrast medium. Acta Biomed. 2018;89(1-S):208–19.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fayad.

Ethics declarations

Conflict of interest

Laura M. Fayad has received funding as follows: NIH R61 R61AT012279, National Therapeutic Acceleration Program, and NIH U01AR080993-01A, John Staurulakis Endowed Scholar Award.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Luna, R., Kheterpal, A. et al. Axial T1-weighted imaging of the lumbar spine: a redundancy or an asset?. Skeletal Radiol 53, 1061–1070 (2024). https://doi.org/10.1007/s00256-023-04522-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04522-1

Keywords

Navigation