Skip to main content
Log in

Major aldehyde dehydrogenase AldFGH of Gluconacetobacter diazotrophicus is independent of pyrroloquinoline quinone but dependent on molybdopterin for acetic acid fermentation

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid fermentation involves the oxidation of ethanol to acetic acid via acetaldehyde as the intermediate and is catalyzed by the membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) of acetic acid bacteria. Although ADH depends on pyrroloquinoline quinone (PQQ), the prosthetic group associated with ALDH remains a matter of debate. This study aimed to address the dependency of ALDH of Gluconacetobacter diazotrophicus strain PAL5 on PQQ and the physiological role of ALDH in acetic acid fermentation. We constructed deletion mutant strains for both the ALDH gene clusters of PAL5, aldFGH and aldSLC. In addition, the adhAB operon for ADH was eliminated, since it shows ALDH activity. The triple-deletion derivative ΔaldFGH ΔaldSLC ΔadhAB failed to show ALDH activity, which suggested that ALDH activity in PAL5 is derived from these three enzyme complexes. Since the single-gene cluster deletion derivative ΔaldFGH lost most ALDH activity, and accumulated much higher acetaldehyde than wild type under acetic acid fermentation conditions, we concluded that AldFGH functions as the major ALDH in PAL5. Furthermore, deletion of the PQQ biosynthesis gene cluster (pqqABCDE) abolished ADH activity completely, but did not affect ALDH activity. Instead, the molybdopterin biosynthesis gene deletion derivatives lost ALDH activity. Thus, we concluded that the AldFGH and AldSLC complexes of Ga. diazotrophicus PAL5 require a form of molybdopterin but not PQQ for ALDH activity.

Key points

• AldFGH is the major aldehyde dehydrogenase in Gluconacetobacter diazotrophicus PAL5.

• Acetaldehyde accumulated from ethanol in the absence of AldFGH.

• Molybdopterin, rather than pyrroloquinoline quinone, is required for AldFGH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adachi O, Yakushi T (2016) Membrane-bound dehydrogenases of acetic acid bacteria. in Acetic Acid Bacteria: Ecology and Physiology (Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. eds.). Springer Japan, Tokyo, pp 273–297

    Google Scholar 

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1980) Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 44:503–515

    CAS  Google Scholar 

  • Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O (1981) Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett 130:179–183

    Article  CAS  Google Scholar 

  • Andres-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Perez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193:2670–2671

    Article  CAS  Google Scholar 

  • Armstrong JM (1964) The molar extinction coefficient of 2,6-dichlorophenol indophenol. Biochim Biophys Acta 86:194–197

    Article  CAS  Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Article  CAS  Google Scholar 

  • Cavalcante VA, Dobereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil 108:23–31

    Article  Google Scholar 

  • Dulley JR, Grieve PA (1975) A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64:136–141

    Article  CAS  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 76:1648–1652

    Article  CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Tetxeira KRS, Dobereiner J, Ley J (1989) Acetobacter diazotrophicus sp. nov, a nitrogen-fixing acetic-acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Article  Google Scholar 

  • Giongo A, Tyler HL, Zipperer UN, Triplett EW (2010) Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission. Stand Genomic Sci 2:309–317

    Article  Google Scholar 

  • Gómez-Manzo S, Contreras-Zentella M, González-Valdez A, Sosa-Torres M, Arreguín-Espinoza R, Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125:71–78

    Article  Google Scholar 

  • Gómez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguín-Espinosa R, Pérez de la Mora M, Membrillo-Hernández J, Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192:5718–5724

    Article  Google Scholar 

  • Gómez-Manzo S, Escamilla JE, González-Valdez A, López-Velázquez G, Vanoye-Carlo A, Marcial-Quino J, de la Mora-de la Mora I, Garcia-Torres I, Enríquez-Flores S, Contreras-Zentella ML, Arreguín-Espinosa R, Kroneck PM, Sosa-Torres ME (2015) The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde dehydrogenase (ADHa). Int J Mol Sci 16:1293–1311

    Article  Google Scholar 

  • Goosen N, Horsman HP, Huinen RG, van de Putte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol 171:447–455

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Kanchanarach W, Theeragool G, Yakushi T, Toyama H, Adachi O, Matsushita K (2010) Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol 85:741–751

    Article  CAS  Google Scholar 

  • Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K (2013) Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 79:1654–1660

    Article  CAS  Google Scholar 

  • Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376

    Article  CAS  Google Scholar 

  • Leimkühler S, Angermüller S, Schwarz G, Mendel RR, Klipp W (1999) Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. J Bacteriol 181:5930–5939

    Article  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075

    Article  CAS  Google Scholar 

  • Matsushita K, Ameyama M (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154

    Article  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. in Advances in Microbial Physiology (Rose, A.H., Tempest, D.W. eds.). Academic Press, London, pp 247–301

    Google Scholar 

  • Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A (2017) Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Appl Microbiol Biotechnol 101:3189–3200

    Article  CAS  Google Scholar 

  • Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A (2013) Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 97:6397–6412

    Article  CAS  Google Scholar 

  • Rieder C, Eisenreich W, O'Brien J, Richter G, Götze E, Boyle P, Blanchard S, Bacher A, Simon H (1998) Rearrangement reactions in the biosynthesis of molybdopterin - An NMR study with multiply 13C/15N labelled precursors. Eur J Biochem 255:24–36

    Article  CAS  Google Scholar 

  • Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O (1997) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 61:138–145

    Article  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  Google Scholar 

  • Takemura H, Tsuchida T, Yoshinaga F, Matsushita K, Adachi O (1994) Prosthetic group of aldehyde dehydrogenase in acetic acid bacteria not pyrroloquinoline quinone. Biosci Biotechnol Biochem 58:2082–2083

    Article  CAS  Google Scholar 

  • Tamaki T, Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Nishiyama M, Horinouchi S, Beppu T (1991) Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes. Biochim Biophys Acta 1088:292–300

    Article  CAS  Google Scholar 

  • Thurner C, Vela C, Thony-Meyer L, Meile L, Teuber M (1997) Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch Microbiol 168:81–91

    Article  CAS  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  Google Scholar 

  • Yakushi T, Fukunari S, Kodama T, Matsutani M, Nina S, Kataoka N, Theeragool G, Matsushita K (2018) Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108. Appl Microbiol Biotechnol 102:4549–4561

    Article  CAS  Google Scholar 

  • Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Japanese Government (Monbukagakusho: MEXT) Scholarships that supported RM work in this study. We thank Oriental Yeast (Tokyo, Japan) and Toyobo (Osaka, Japan) for gifting us with yeast extract and restriction endonucleases, respectively. We are grateful to Tomoyuki Kosaka and Mamoru Yamada for their invaluable suggestions. We thank Osao Adachi and Hirohide Toyama for encouraging our ALDH work. This work was supported by KAKENHI grant number 23580115.

Funding

This work was supported by KAKENHI grant number 23580115.

Author information

Authors and Affiliations

Authors

Contributions

TY designed the study and wrote the manuscript. RM performed most experiments, analyzed the data, prepared the figures, and wrote a draft manuscript. SN and TM assisted in constructing bacterial strains and editing the manuscript. MM performed bioinformatics analysis. TY, NK, and KM supervised and edited the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Toshiharu Yakushi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals that were performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miah, R., Nina, S., Murate, T. et al. Major aldehyde dehydrogenase AldFGH of Gluconacetobacter diazotrophicus is independent of pyrroloquinoline quinone but dependent on molybdopterin for acetic acid fermentation. Appl Microbiol Biotechnol 105, 2341–2350 (2021). https://doi.org/10.1007/s00253-021-11144-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11144-x

Keywords

Navigation