Skip to main content
Log in

A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-d-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The membrane-bound gluconate dehydrogenase (mGADH) is a critical enzyme for 2-keto-d-gluconic acid (2KGA) production in Pseudomonas plecoglossicida JUIM01. The purified native flavin adenine dinucleotide-dependent mGADH (FAD-mGADH) was consisted of a gamma subunit, a flavoprotein subunit, and a cytochrome c subunit with molecular mass of ~ 27, 65, and 47 kDa, respectively. The specific activity of FAD-mGADH was determined as 90.71 U/mg at optimum pH and temperature of 6.0 and 35 °C. The Km and Vmax values of calcium d-gluconate were 0.631 mM and 0.734 mM/min. The metal ions Mg2+ and Mn2+ showed slight positive effects on FAD-mGADH activity. On the other hand, a 3868-bp-length gad gene cluster was amplified and expressed in Escherichia coli BL21(DE3). The recombinant protein showed the same molecular weight and enzyme activity as the native FAD-mGADH, which confirmed it as a FAD-mGADH encoding gene. The flavoprotein subunit and the cytochrome c subunit containing a putative FAD-binding motif and three possible heme-binding motifs concluded from alignment results of mGADHs. This study characterized the native and recombinant FAD-mGADH and would provide the basis for further genetic modification of Pseudomonas plecoglossicida JUIM01 with the intention of 2KGA productivity improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stottmeister, U., Aurich, A., Wilde, H., Andersch, J., Schmidt, S., & Sicker, D. (2005). White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. Journal of Industrial Microbiology & Biotechnology, 32(11-12), 651–664. https://doi.org/10.1007/s10295-005-0254-x.

    Article  CAS  Google Scholar 

  2. Pappenberger, G., & Hohmann, H. P. (2014). Industrial production of l-ascorbic acid (vitamin C) and d-isoascorbic acid. Advances in Biochemical Engineering/Biotechnology, 143, 143–188. https://doi.org/10.1007/10_2013_243.

    Article  CAS  PubMed  Google Scholar 

  3. Sun, W. J., Liu, C. F., Yu, L., Cui, F. J., Zhou, Q., Yu, S. L., & Sun, L. (2012). A novel bacteriophage KSL-1 of 2-keto-gluconic acid producer Pseudomonas fluorescens K1005: isolation, characterization and its remedial action. BMC Microbiology, 12(1), 127. https://doi.org/10.1186/1471-2180-12-127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, W. J., Zhou, Y. Z., Zhou, Q., Cui, F. J., Yu, S. L., & Sun, L. (2012). Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Bioresource Technology, 110, 546–551. https://doi.org/10.1016/j.biortech.2012.01.040.

    Article  CAS  PubMed  Google Scholar 

  5. Umezawa, K., Takeda, K., Ishida, T., Sunagawa, N., Makabe, A., Isobe, K., Koba, K., Ohno, H., Samejima, M., Nakamura, N., Igarashi, K., & Yoshida, M. (2015). A novel pyrroloquinoline quinone-dependent 2-keto-d-glucose dehydrogenase from Pseudomonas aureofaciens. Journal of Bacteriology, 197(8), 1322–1329. https://doi.org/10.1128/JB.02376-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chia, M., Van Nguyen, T. B., & Choi, W. J. (2008). DO-stat fed-batch production of 2-keto-d-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 78(5), 759–765. https://doi.org/10.1007/s00253-008-1374-9.

    Article  CAS  PubMed  Google Scholar 

  7. Sun, W. J., Xiao, F. F., Wei, Z., Cui, F. J., Yu, L., Yu, S. L., & Zhou, Q. (2015). Non-sterile and buffer-free bioconversion of glucose to 2-keto-gluconic acid by using Pseudomonas fluorescens AR4 free resting cells. Process Biochemistry, 50(4), 493–499. https://doi.org/10.1016/j.procbio.2015.01.011.

    Article  CAS  Google Scholar 

  8. Wei, Z., Yu, S. L., Sun, W. J., Zhou, Q., & Li, Z. B. (2008). Research progress on fermentation production of 2-keto-d-gluconic acid. Food Science, 29, 636–639 (in Chinese).

    CAS  Google Scholar 

  9. Xue, Q., Wei, Z., Sun, W. J., Cui, F. J., Yu, S. L., Zhou, Q., & Liu, J. Z. (2015). 2-Keto-d-gluconate-yielding membrane-bound d-glucose dehydrogenase from Arthrobacter globiformis C224: purification and characterization. Molecules, 20(1), 846–862. https://doi.org/10.3390/molecules20010846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, G. F., Wei, Z., Sun, W. J., Cui, F. J., Wang, D. M., Yu, S. L., & Zhou, Q. (2015). Purification and enzymatic characterization of membrane-bound d-gluconate dehydrogenase from Arthrobacter globiformis. Journal of Molecular Catalysis B: Enzymatic, 113, 14–22. https://doi.org/10.1016/j.molcatb.2014.12.014.

    Article  CAS  Google Scholar 

  11. Sun, W. J., Yun, Q. Q., Zhou, Y. Z., Cui, F. J., Yu, S. L., Zhou, Q., & Sun, L. (2013). Continuous 2-keto-gluconic acid (2KGA) production from corn starch hydrolysate by Pseudomonas fluorescens AR4. Biochemical Engineering Journal, 77, 97–102. https://doi.org/10.1016/j.bej.2013.05.010.

    Article  CAS  Google Scholar 

  12. Ramakrishnan, T., & Campbell, J. J. (1955). Gluconic dehydrogenase of Pseudomonas aeruginosa. Biochimica et Biophysica Acta, 17, 122–127. https://doi.org/10.1016/0006-3002(55)90326-7.

    Article  CAS  PubMed  Google Scholar 

  13. Matsushita, K., Shinagawa, E., Adachi, O., & Ameyama, M. (1979). Membrane-bound d-gluconate dehydrogenase from Pseudomonas aeruginosa: purification and structure of cytochrome-binding form. Journal of Biochemistry, 85, 1173–1181. https://doi.org/10.1093/oxfordjournals.jbchem.a132441.

    Article  CAS  PubMed  Google Scholar 

  14. Matsushita, K., Shinagawa, E., & Ameyama, M. (1982). D-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods in Enzymology, 89, 187–193. https://doi.org/10.1016/S0076-6879(82)89033-2.

    Article  CAS  PubMed  Google Scholar 

  15. Toyama, H., Furuya, N., Saichana, I., Ano, Y., Adachi, O., & Matsushita, K. (2007). Membrane-bound, 2-keto-d-gluconate-yielding d-gluconate dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: molecular properties and gene disruption. Applied and Environmental Microbiology, 73(20), 6551–6556. https://doi.org/10.1128/AEM.00493-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shinagawa, E., Matsushita, K., Adachi, O., & Ameyama, M. (1984). d-Gluconate dehydrogenase, 2-keto-d-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agricultural and Biological Chemistry, 48(6), 1517–1522. https://doi.org/10.1271/bbb1961.48.1517.

    Article  CAS  Google Scholar 

  17. Shinagawa, E., Matsushita, K., Adachi, O., & Ameyama, M. (1978). Membrane-bound d-gluconate dehydrogenase of Serratia marcescens: purification and properties. Agricultural and Biological Chemistry, 42(12), 2355–2361. https://doi.org/10.1080/00021369.1978.10863360.

    Article  CAS  Google Scholar 

  18. Yum, D. Y., Lee, Y. P., & Pan, J. G. (1997). Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. Journal of Bacteriology, 179(21), 6566–6572. https://doi.org/10.1128/jb.179.21.6566-6572.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saichana, I., Moonmangmee, D., Adachi, O., Matsushita, K., & Toyama, H. (2009). Screening of thermotolerant Gluconobacter strains for production of 5-keto-d-gluconic acid and disruption of flavin adenine dinucleotide-containing d-gluconate dehydrogenase. Applied and Environmental Microbiology, 75(13), 4240–4247. https://doi.org/10.1128/AEM.00640-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, W. J., Luan, F., Wang, D. M., Zhang, X. F., Cui, F. J., & Li, Y. Z. (2016). Cloning and bioinformatic analysis of a 2-ketogluconate transporter gene from Pseudomonas plecoglossicida. Modern Food Science and Technology, 50-55(in Chinese), 32. https://doi.org/10.13982/j.mfst.1673-9078.2016.6.009.

    Article  Google Scholar 

  21. Wang, D. M., Sun, L., Sun, W. J., Cui, F. J., Gong, J. S., Zhang, X. M., Shi, J. S., & Xu, Z. H. (2018). Purification, characterization and gene identification of a membrane-bound glucose dehydrogenase from 2-keto-d-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01. International Journal of Biological Macromolecules, 118, 534–541. https://doi.org/10.1016/j.ijbiomac.2018.06.097.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, K., Mustafa, G., Tagawa, S., & Yamada, M. (2005). Transient formation of a neutral ubisemiquinone radical and subsequent intramolecular electron transfer to pyrroloquinoline quinone in the Escherichia coli membrane-integrated glucose dehydrogenase. Biochemistry, 44(41), 13567–13572. https://doi.org/10.1021/bi051347n.

    Article  CAS  PubMed  Google Scholar 

  23. Sara-Paez, M., Contreras-Zentella, M., Gomez-Manzo, S., Gonzalez-Valdez, A. A., Gasca-Licea, R., Mendoza-Hernandez, G., Escamilla, J. E., & Reyes-Vivas, H. (2015). Purification and characterization of the membrane-bound quinoprotein glucose dehydrogenase of Gluconacetobacter diazotrophicus PAL 5. The Protein Journal, 34(1), 48–59. https://doi.org/10.1007/s10930-014-9596-4.

    Article  CAS  PubMed  Google Scholar 

  24. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., Geer, L. Y., & Bryant, S. H. (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200–D203. https://doi.org/10.1093/nar/gkw1129.

    Article  CAS  PubMed  Google Scholar 

  25. Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340(4), 783–795. https://doi.org/10.1016/j.jmb.2004.05.028.

    Article  CAS  PubMed  Google Scholar 

  26. Chang, T. H., Huang, H. Y., Hsu, J. B., Weng, S. L., Horng, J. T., & Huang, H. D. (2013). An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics, 14(Suppl 2), S4–S8. https://doi.org/10.1186/1471-2105-14-S2-S4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Solovyev, V. S. A., & Salamov, A. (2011). Automatic annotation of microbial genomes and metagenomic sequences. in metagenomics and its applications in agriculture, biomedicine and environmental studies (Li, R.W., ed.), Nova Science Publishers, Hauppauge, NY, pp. 61–78.

  28. Landete, J. M., Rodriguez, H., Curiel, J. A., de las Rivas, B., Mancheno, J. M., & Munoz, R. (2010). Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. Journal of Industrial Microbiology & Biotechnology, 37(6), 617–624. https://doi.org/10.1007/s10295-010-0709-6.

    Article  CAS  Google Scholar 

  29. Schmid, R. D., & Urlacher, V. B. (2007). Modern biooxidation: enzymes, reactions and applications. Hoboken, NJ: John Wiley & Sons.

    Book  Google Scholar 

  30. Shinagawaa, E., Matsushitab, K., Toyamab, H., & Adachib, O. (1999). Production of 5-keto-d-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound d-gluconate dehydrogenase. Journal of Molecular Catalysis B: Enzymatic, 6(3), 341–350. https://doi.org/10.1016/S1381-1177(98)00112-X.

    Article  Google Scholar 

  31. Klasen, R., Bringer-Meyer, S., & Sahm, H. (1995). Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. Journal of Bacteriology, 177(10), 2637–2643. https://doi.org/10.1128/jb.177.10.2637-2643.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prakash, B., Vidyasagar, M., Jayalakshmi, S. K., & Sreeramulu, K. (2012). Purification and some properties of low-molecular-weight extreme halophilic xylanase from Chromohalobacter sp. TPSV 101. Journal of Molecular Catalysis B: Enzymatic, 74(3-4), 192–198. https://doi.org/10.1016/j.molcatb.2011.10.004.

    Article  CAS  Google Scholar 

  33. Zhang, W., Yan, B., Wang, J., Yao, J., & Yu, Z. (2006). Purification and characterization of membrane-bound l-sorbose dehydrogenase from Gluconobacter oxydans GO112. Enzyme and Microbial Technology, 38(5), 643–648. https://doi.org/10.1016/j.enzmictec.2005.07.016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks go to Ph.D. Xue Cai (Jiangnan University) for her help regarding the language polish of this manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (31571885), the Innovation Group Construction Program of Jiangxi Province (20142BCB24024), the Science & Technology Program of Jiangxi Province (No. [2015]64), Science & Technology Program of Dexing city (No. [2015]44), and the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-11 and LITE2018-18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Jing Sun or Zheng-Hong Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 4163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DM., Sun, L., Sun, WJ. et al. A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-d-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification. Appl Biochem Biotechnol 188, 897–913 (2019). https://doi.org/10.1007/s12010-019-02951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02951-0

Keywords

Navigation