Skip to main content
Log in

Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi O, Miyagawa E, Shinagawa E, Matsushita K, Ameyama M (1978a) Purification and properties of particulate alcohol dehydrogenase from Acetobacter aceti. Agric Biol Chem 42(12):2341–2346

    Google Scholar 

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978b) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42(11):2045–2056

    CAS  Google Scholar 

  • Ameyama M, Matsushita K, Shinagawa E, Adachi O (1987) Sugar-oxidizing respiratory chain of Gluconobacter suboxydans. Evidence for a branched respiratory chain and characterization of respiratory chain-linked cytochromes. Agric Biol Chem 51(11):2943–2950

    CAS  Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37(17):5768–5783

    Article  CAS  Google Scholar 

  • Bader MW, Xie T, Yu CA, Bardwell JC (2000) Disulfide bonds are generated by quinone reduction. J Biol Chem 275(34):26082–26088

    Article  CAS  Google Scholar 

  • Cunningham L, Pitt M, Williams HD (1997) The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24(3):579–591

    Article  CAS  Google Scholar 

  • Duine JA, Frank J, De Beer R (1984) An electron-nuclear double-resonance study of methanol dehydrogenase and its coenzyme radical. Arch Biochem Biophys 233(2):708–711

    Article  CAS  Google Scholar 

  • Elias MD, Nakamura S, Migita CT, Miyoshi H, Toyama H, Matsushita K, Adachi O, Yamada M (2004) Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase. J Biol Chem 279(4):3078–3083

    Article  CAS  Google Scholar 

  • Frébortová J, Matsushita K, Yakushi T, Toyama H, Adachi O (1997) Quinoprotein alcohol dehydrogenase of acetic acid bacteria: Kinetic study on the enzyme purified from Acetobacter methanolicus. Biosci Biotechnol Biochem 61(3):459–465

    Article  Google Scholar 

  • Frébortová J, Matsushita K, Arata H, Adachi O (1998) Intramolecular electron transport in quinoprotein alcohol dehydrogenase of Acetobacter methanolicus: a redox-titration study. Biochim Biophys Acta 1363(1):24–34

    Article  Google Scholar 

  • Geerlof A, van Tol JBA, Jongejan JA, Duine JA (1994) Enantioselective conversions of the racemic C3-alcohol synthons, glycidol (2, 3-epoxy-1-propanol), and solketal (2, 2-dimethyl-4-(hydroxymethyl)-1, 3-dioxolane) by quinohaemoprotein alcohol dehydrogenases and bacteria containing such enzymes. Bioscience, Biotechnology and Biochemistry 42(1):8–15

    CAS  Google Scholar 

  • Gómez-Manzo S, Contreras-Zentella M, González-Valdez A, Sosa-Torres M, Arreguín-Espinoza R, Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125(1):71–78

    Article  Google Scholar 

  • Habe H, Fukuoka T, Kitamoto D, Sakaki K (2009a) Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis. Appl Microbiol Biotechnol 81(6):1033–1039

    Article  CAS  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K (2009b) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environ Microbiol 75(24):7760–7766

    Article  CAS  Google Scholar 

  • Ikeda T, Kano K (2003) Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochim Biophys Acta 1647(1–2):121–126

    CAS  Google Scholar 

  • Ikeda T, Kobayashi D, Matsushita F (1993) Bioelectrocatalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator. J Electroanal Chem 361:221–228

    Article  CAS  Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M, Yano K (1989) Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti. J Bacteriol 171(6):3115–3122

    CAS  Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M, Yano K (1992) Cloning and sequencing of the gene encoding the 45-kilodalton subunit of alcohol dehydrogenase from Acetobacter aceti. J Ferment Bioeng 73(6):419–424

    Article  CAS  Google Scholar 

  • Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007) Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9(15):1793–1801

    Article  CAS  Google Scholar 

  • Kanchanarach W, Theeragool G, Yakushi T, Toyama H, Adachi O, Matsushita K (2009) Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol 85(3):741–751

    Article  Google Scholar 

  • Kondo K, Beppu T, Horinouchi S (1995) Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol 177(17):5048–5055

    CAS  Google Scholar 

  • Machado SS, Wandel U, Jongejan JA, Straathof AJJ, Duine JA (1999) Characterization of the enantioselective properties of the quinohemoprotein alcohol dehydrogenase of Acetobacter pasteurianus LMG 1635. 1. Different enantiomeric ratios of whole cells and purified enzyme in the kinetic resolution of racemic glycidol. Biosci Biotechnol Biochem 63(1):10–20

    Google Scholar 

  • Masud U, Matsushita K, Theeragool G (2010) Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108. Int J Food Microbiol 138(1–2):39–49

    Google Scholar 

  • Matsushita K, Nagatani Y, Shinagawa E, Adachi O, Ameyama M (1989) Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans. Agric Biol Chem 53(11):2895–2902

    CAS  Google Scholar 

  • Matsushita K, Nagatani Y, Shinagawa E, Adachi O, Ameyama M (1991) Reconstitution of the ethanol oxidase respiratory chain in membranes of quinoprotein alcohol dehydrogenase-deficient Gluconobacter suboxydans subsp. alpha strains. J Bacteriol 173(11):3440–3445

    CAS  Google Scholar 

  • Matsushita K, Takaki Y, Shinagawa E, Ameyama M, Adachi O (1992) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci Biotechnol Biochem 56(2):304–310

    Article  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 36. Academic, London, pp 247–301

    Google Scholar 

  • Matsushita K, Yakushi T, Takaki Y, Toyama H, Adachi O (1995) Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in Gluconobacter suboxydans. J Bacteriol 177(22):6552–6559

    CAS  Google Scholar 

  • Matsushita K, Yakushi T, Toyama H, Shinagawa E, Adachi O (1996) Function of multiple heme c moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J Biol Chem 271(9):4850–4857

    Article  CAS  Google Scholar 

  • Matsushita K, Yakushi T, Toyama H, Adachi O, Miyoshi H, Tagami E, Sakamoto K (1999) The quinohemoprotein alcohol dehydrogenase of Gluconobacter suboxydans has ubiquinol oxidation activity at a site different from the ubiquinone reduction site. Biochim Biophys Acta 1409(3):154–164

    Article  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (2004) Respiratory chains in acetic acid bacteria: Membrane-bound periplasmic sugar and alcohol respirations. In: Zannoni D (ed) Respiration in Archaea and Bacteria. Springer, Dordrecht, pp 81–99

    Chapter  Google Scholar 

  • Matsushita K, Kobayashi Y, Mizuguchi M, Toyama H, Adachi O, Sakamoto K, Miyoshi H (2008) A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans. Biosci Biotechnol Biochem 72(10):2723–2731

    Article  CAS  Google Scholar 

  • Mitsukura K, Uno T, Yoshida T, Nagasawa T (2007) Microbial asymmetric oxidation of 2-butyl-1, 3-propanediol. Appl Microbiol Biotechnol 76(1):61–65

    Article  CAS  Google Scholar 

  • Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Omura S, Kita K, Matsushita K (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem 146(2):263–271

    Article  CAS  Google Scholar 

  • Molinari F, Villa R, Aragozzini F, Leon R, Prazeres DMF (1999) Enantioselective oxidation of (RS)-2-phenyl-1-propanol to (S)-2-phenylpropanoic acid with Gluconobacter oxydans: Simplex optimization of the biotransformation. Tetrahedron Asymmetry 10(15):3003–3009

    Article  CAS  Google Scholar 

  • Molinari F, Gandolfi R, Villa R, Urban E, Kiener A (2003) Enantioselective oxidation of prochiral 2-methyl-1,3-propandiol by Acetobacter pasteurianus. Tetrahedron Asymmetry 14(14):2041–2043

    Google Scholar 

  • Niculescu M, Erichsen T, Sukharev V, Kerenyi Z, Csöregi E, Schuhmann W (2002) Quinohemoprotein alcohol dehydrogenase-based reagentless amperometric biosensor for ethanol monitoring during wine fermentation. Analytica Chimica Acta 463(1):39–51

    Article  CAS  Google Scholar 

  • Ohta H, Tetsukawa H, Noto N (1982) Enantiotopically selective oxidation of α, ω-diols with the enzyme systems of microorganisms. Journal of Organic Chemistry 47(12):2400–2404

    Article  CAS  Google Scholar 

  • Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57(1):50–108

    CAS  Google Scholar 

  • Ruzicka FJ, Beinert H, Schepler KL, Dunham WR, Sands RH (1975) Interaction of ubisemiquinone with a paramagnetic component in heart tissue. Proc Natl Acad Sci USA 72(8):2886–2890

    Article  CAS  Google Scholar 

  • Sato-Watanabe M, Mogi T, Ogura T, Kitagawa T, Miyoshi H, Iwamura H, Anraku Y (1994) Identification of a novel quinone-binding site in the cytochrome bo complex from Escherichia coli. J Biol Chem 269(46):28908–28912

    CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1989) Formation of the apo-form of quinoprotein alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 53(7):1823–1828

    CAS  Google Scholar 

  • Shinagawa E, Toyama H, Matsushita K, Tuitemwong P, Theeragool G, Adachi O (2006) A novel type of formaldehyde-oxidizing enzyme from the membrane of Acetobacter sp. SKU 14. Biosci Biotechnol Biochem 70(4):850–857

    Article  CAS  Google Scholar 

  • Tamaki T, Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Nishiyama M, Horinouchi S, Beppu T (1991) Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes. Biochim Biophys Acta 1088(2):292–300

    CAS  Google Scholar 

  • Tayama K, Fukaya M, Okumura H, Kawamura Y, Beppu T (1989) Purification and characterization of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes sp. nov. Appl Microbiol Biotechnol 32(2):181–185

    Article  CAS  Google Scholar 

  • Tkac J, Svitel J, Vostiar I, Navratil M, Gemeiner P (2009) Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry 76(1–2):53–62

    Article  CAS  Google Scholar 

  • Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K (2006) Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 70(3):366–373

    Article  CAS  Google Scholar 

  • Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125(1):15–24

    Article  CAS  Google Scholar 

  • Yamashita T, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T (2007) Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. J Biol Chem 282(9):6012–6020

    Article  CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299(5607):700–704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Matsushita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakushi, T., Matsushita, K. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86, 1257–1265 (2010). https://doi.org/10.1007/s00253-010-2529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2529-z

Keywords

Navigation