Skip to main content
Log in

Transglutaminases: recent achievements and new sources

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Transglutaminases are a family of enzymes (EC 2.3.2.13), widely distributed in various organs, tissues, and body fluids, that catalyze the formation of a covalent bond between a free amine group and the γ-carboxamide group of protein or peptide-bound glutamine. Besides forming these bonds, that exhibit high resistance to proteolytic degradation, transglutaminases also form extensively cross-linked, generally insoluble, protein biopolymers that are indispensable for the organism to create barriers and stable structures. The extremely high cost of transglutaminase of animal origin has hampered its wider application and has initiated efforts to find an enzyme of microbial origin. Since the early 1990s, many microbial transglutaminase-producing strains have been found, and production processes have been optimized. This has resulted in a rapidly increasing number of applications of transglutaminase in the food sector. However, applications of microbial transglutaminase in other sectors have also been explored, but in a much lesser extent. Our group has identified a transglutaminase in the oomycete Phytophthora cinnamomi, which is able to induct defense responses and disease-like symptoms. In this mini-review, we report the achievements in this area in order to illustrate the importance and the versatility of transglutaminases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akimov SS, Belkin AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci 114(16):2989–3000

    CAS  PubMed  Google Scholar 

  • Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoli M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53:2613–2617

    Article  CAS  Google Scholar 

  • Beninati S, Bergamini CM, Piacentini M (2009) An overview of the first 50 years of transglutaminase research. Amino Acids 36(4):591–598

    Article  CAS  PubMed  Google Scholar 

  • Beninati S, Iorio RA, Tasco G, Serafini-Fracassini D, Casadio R, Del Duca S (2013) Expression of different forms of transglutaminases by immature cells of Helianthus tuberosus sprout apices. Amino Acids 44(1):271–283

    Article  CAS  PubMed  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  CAS  PubMed  Google Scholar 

  • Boehm JE, Singh U, Combs C, Antonyak MA, Cerione RA (2002) Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem 277(23):20127–20130

    Article  CAS  PubMed  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nurnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21(24):6681–6688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campos A, Carvajal-Vallejos PK, Villalobos E, Franco CF, Almeida AM, Coelho AV, Torne JM, Santos M (2010) Characterisation of Zea mays L. plastidial transglutaminase: interactions with thylakoid membrane proteins. Plant Biol 12(5):708–716

    Article  CAS  PubMed  Google Scholar 

  • Camposa N, Castañón S, Urretab I, Santosa M, Torné JM (2013) Rice transglutaminase gene: identification, protein expression, functionality, light dependence and specific cell location. Plant Sci 205–206:97–110

    Article  Google Scholar 

  • Capell T, Claparols I, Del Duca S, Bassie L, Miro B, Rodriguez-Montesinos J, Christou P, Serafini-Fracassini D (2004) Producing transglutaminases by molecular farming in plants: minireview article. Amino Acids 26(4):419–423

    Article  CAS  PubMed  Google Scholar 

  • Carvajal P, Gibert J, Campos N, Lopera O, Barbera E, Torne JM, Santos M (2011) Activity of maize transglutaminase overexpressed in Escherichia coli inclusion bodies: an alternative to protein refolding. Biotechnol Prog 27(1):232–240

    Article  CAS  PubMed  Google Scholar 

  • Castro-Briones M, Calderon GN, Velazquez G, Salud-Rubio M, Vázquez M, Ramirez JA (2009) Effect of setting conditions using microbial transglutaminase during obtention of beef gels. J Food Process Eng 32:221–234

    Article  Google Scholar 

  • Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24(17):2831–2841

    Article  CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  CAS  PubMed  Google Scholar 

  • Choupina AB, Estevinho L, Martins IM (2014) Scientifically advanced solutions for chestnut ink disease. Appl Microbiol Biotechnol 98(9):3905–3909

    Article  CAS  PubMed  Google Scholar 

  • Chung SI (1972) Comparative studies on tissue transglutaminase and factor XIII. Ann N Y Acad Sci 202:240–255

    Article  CAS  PubMed  Google Scholar 

  • Csosz E, Bagossi P, Nagy Z, Dosztanyi Z, Simon I, Fesus L (2008) Substrate preference of transglutaminase 2 revealed by logistic regression analysis and intrinsic disorder examination. J Mol Biol 383(2):390–402

    Article  CAS  PubMed  Google Scholar 

  • Da Cruz RB, Galdino PM, Penna KG, Hoffmann K, Costa EA, Bataus LA (2013) Acetone extract from Streptoverticillium sp., a bacterium isolated from Brazilian Cerrado soil, induces anti-inflammatory activity in mice. An Acad Bras Cienc 85(2):595–603

    Article  PubMed  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Bonner P, Cresti M, Cai G (2009) Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418(3):651–664

    Article  PubMed  Google Scholar 

  • Della Mea M, Caparros-Ruiz D, Claparols I, Serafini-Fracassini D, Rigau J (2004) AtPng1p. The first plant transglutaminase. Plant Physiol 135(4):2046–2054

    Article  CAS  PubMed  Google Scholar 

  • Di Pierro P, Chico B, Villalonga R, Mariniello L, Masia P, Porta R (2007) Transglutaminase-catalyzed preparation of chitosan–ovalbumin films. Enzym Microb Technol 40(3):437–441

    Article  Google Scholar 

  • Di Sandro A, Del Duca S, Verderio E, Hargreaves AJ, Scarpellini A, Cai G, Cresti M, Faleri C, Iorio RA, Hirose S, Furutani Y, Coutts IG, Griffin M, Bonner PL, Serafini-Fracassini D (2010) An extracellular transglutaminase is required for apple pollen tube growth. Biochem J 429(2):261–271

    Article  PubMed  Google Scholar 

  • Facchiano F, Facchiano A, Facchiano AM (2006) The role of transglutaminase-2 and its substrates in human diseases. Front Biosci 11:1758–1773

    Article  CAS  PubMed  Google Scholar 

  • Faria SD (2010) Estudo dos Efeitos da Aplicação de Transglutaminase em Bebida Láctea Fermentada com Alto Conteudo de Soro. Master, Escola de Engenharia Mauá de Tecnologia

  • Folk JE, Chung SI (1973) Molecular and catalytic properties of transglutaminases. Adv Enzymol Relat Areas Mol Biol 38:109–191

    CAS  PubMed  Google Scholar 

  • Folk JE, Cole PW (1966) Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. J Biol Chem 241(23):5518–5525

    CAS  PubMed  Google Scholar 

  • Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL (1980) Polyamines as physiological substrates for transglutaminases. J Biol Chem 255(8):3695–3700

    CAS  PubMed  Google Scholar 

  • Hu X, Zhao M, Sun W, Zhao G, Ren J (2011) Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. J Agric Food Chem 59(16):8886–8894

    Article  CAS  PubMed  Google Scholar 

  • Icekson I, Apelbaum A (1987) Evidence for transglutaminase activity in plant tissue. Plant Physiol 84(4):972–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaros D, Heidig C, Rohm H (2007) Enzymatic modification through microbial transglutaminase enhances the viscosity of stirred yogurt. J Texture Stud 38:179–198

    Article  Google Scholar 

  • Jaros D, Partschefeld C, Henle T, Rohm H (2006) Transglutaminase in dairy products: chemistry, physics, applications. J Texture Stud 37(2):113–155

    Article  Google Scholar 

  • Jung HJ, Chen Z, Wang M, Fayad L, Romaguera J, Kwak LW, McCarty N (2012) Calcium blockers decrease the bortezomib resistance in mantle cell lymphoma via manipulation of tissue transglutaminase activities. Blood 119(11):2568–2578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamoun S (2001) Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr Opin Plant Biol 4(4):295–300

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Park SS, Nam BH, Kim IH, Kim SY (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 66(22):10936–10943

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Tanita Y, Fudo R, Shinozaki J, Suzuki S, Tsuyoshi N, Yokozeki K, Yamanaka S (1998) Microbial process for producing transglutaminase. Japan Patent 0851029A1. http://www.google.com/patents/EP0851029A1?cl=en

  • Kuraishi C, Sakamoto J, Soeda T (1996) The usefulness of transglutaminase for food processing. In: Series AS (ed) Biotechnology for improved foods and flavors, vol 637. American Chemical Society, Washington, pp 29–38

    Chapter  Google Scholar 

  • Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Reviews International 17(2):221–246

    Article  CAS  Google Scholar 

  • Kurakata N, Kurisu M, Yamazaki K, Soeda T (1995) Preparation of retorted food in which food material is soaked in the solution containing transglutaminase. Japan Patent 7008225

  • Lauber S, Henle H, Klostermeyer H (2000) Relationship between the crosslinking of caseins by transglutaminase and the gel strength of yoghurt. Eur Food Res Technol 210(5):305–309

    Article  CAS  Google Scholar 

  • Lentini A, Provenzano B, Tabolacci C, Beninati S (2009) Protein-polyamine conjugates by transglutaminase 2 as potential markers for antineoplastic screening of natural compounds. Amino Acids 36(4):701–708

    Article  CAS  PubMed  Google Scholar 

  • Lentini A, Tabolacci C, Provenzano B, Rossi S, Beninati S (2010) Phytochemicals and protein-polyamine conjugates by transglutaminase as chemopreventive and chemotherapeutic tools in cancer. Plant Physiol Biochem 48(7):627–633

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang L, Cui Y, Luo X, Xue C, Wang S (2013) Expression of soluble recombinant transglutaminase from Zea mays in Pichia pastoris. World J Microbiol Biotechnol 29(5):939–947

    Article  CAS  PubMed  Google Scholar 

  • Lim TJ, Easa AM, Karim AA, Bhat R, Liong MT (2011) Development of soy-based cream cheese via the addition of microbial transglutaminase, soy protein isolate and maltodextrin. Br Food J 133(9):1147–1172

    Article  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen PC (2007) Effects of varying time/temperature-conditions of pre-heating and enzymatic cross-linking on techno-functional properties of reconstituted dairy ingredients. Food Res Int 40(6):700–708

    Article  CAS  Google Scholar 

  • Lorenzen PC, Neve H, Mautner A, Schlimme E (2002) Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. Int J Dairy Technol 55:152–157

    Article  CAS  Google Scholar 

  • Macedo AJ, Sato H (2005) Propriedades e aplicações da transglutaminase microbiana em alimentos Alimentos e Nutrição. Araraquara 16(4):413–419

    CAS  Google Scholar 

  • Martins IM, Martins F, Belo H, Vaz M, Carvalho M, Cravador A, Choupina A (2014) Cloning, characterization and in vitro and in planta expression of a glucanase inhibitor protein (GIP) of Phytophthora cinnamomi. Mol Biol Rep 41(4):2453–2462

    Article  CAS  PubMed  Google Scholar 

  • Marx CK, Hertel TC, Pietzsch M (2008) Purification and activation of a recombinant histidine-tagged pro-transglutaminase after soluble expression in Escherichia coli and partial characterization of the active enzyme. Enzym Microb Technol 42(7):568–575

    Article  CAS  Google Scholar 

  • Mehta K, Fok J, Miller FR, Koul D, Sahin AA (2004) Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10(23):8068–8076

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PM (1995) Reactions and potential industrial applications of transglutaminase. Review of literature and patents. Food Biotechnol 9(3):119–156

    Article  CAS  Google Scholar 

  • Noguchi T, Tanimoto H, Motoki M, Mori M (1992) A promoting material for absorption of minerals and compositions containing it. Japan Patent 04349869

  • Ozer B, Kirmaci HA, Oztekin S, Hayaloglu A, Atamer M (2007) Incorporation of microbial transglutaminase into non-fat yogurt production. Int Dairy J 17(3):199–207

    Article  CAS  Google Scholar 

  • Porta R, Giosafatto CV, di Pierro P, Sorrentino A, Mariniello L (2013) Transglutaminase-mediated modification of ovomucoid: effects on its trypsin inhibitory activity and antigenic properties. Amino Acids 44(1):285–292

    Article  CAS  PubMed  Google Scholar 

  • Rachel NM, Pelletier JN (2013) Biotechnological applications of transglutaminases. Biomolecules 3:870–888

    Article  PubMed Central  PubMed  Google Scholar 

  • Reiss K, Kirchner E, Gijzen M, Zocher G, Loffelhardt B, Nurnberger T, Stehle T, Brunner F (2011) Structural and phylogenetic analyses of the GP42 transglutaminase from Phytophthora sojae reveal an evolutionary relationship between oomycetes and marine Vibrio bacteria. J Biol Chem 286(49):42585–42593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai T, Kuraishi C, Sakaguchi S, Susa Y, Soeda T (1996) Pretreating food aterial having good texture by treating material with transglutaminase. Japan Patent 8332059

  • Sakamoto H, Kumazawa Y, Kawajiri H, Motoki M (1995) ε-(γ-Glutamyl)lysine crosslink distribution in foods as determined by improved method. J Food Sci 60:416–420

    Article  CAS  Google Scholar 

  • Seguro K, Kumazawa Y, Kuraishi C, Sakamoto H, Motoki M (1996a) The epsilon-(gamma-glutamyl)lysine moiety in crosslinked casein is an available source of lysine for rats. J Nutr 126(10):2557–2562

    CAS  PubMed  Google Scholar 

  • Seguro K, Kumazawa Y, Ohtsuka T, Ide H, Nio N, Motoki M, Kubota K (1995) ε-(γ-Glutamyl)lysine: hydrolysis by γ-glutamyltransferase of different origins, when free or protein bound. J Agric Food Chem 43(8):1977–1981

    Article  CAS  Google Scholar 

  • Seguro K, Nio N, Motoki M (1996b) Some characteristics of a microbial protein cross-linking enzyme: transglutaminase. In: Parris N, Kato A, Creamer LK, Pearce J (eds) Macromolecular interactions in food technology. vol 650. American Chemical Society, Columbus, pp 271–280

  • Serafini-Fracassini D, Del Duca S (2008) Transglutaminases: widespread cross-linking enzymes in plants. Ann Bot 102(2):145–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serafini-Fracassini D, Della Mea M, Tasco G, Casadio R, Del Duca S (2009) Plant and animal transglutaminases: do similar functions imply similar structures? Amino Acids 36(4):643–657

    Article  CAS  PubMed  Google Scholar 

  • Shleikin AG, Danilov NP (2011) Evolutionary-biological peculiarities of transglutaminase. Structure, physiological functions, application. Zh Evol Biokhim Fiziol 47(1):3–14

    CAS  PubMed  Google Scholar 

  • Tabolacci C, Lentini A, Provenzano B, Beninati S (2012) Evidences for a role of protein cross-links in transglutaminase-related disease. Amino Acids 42(2–3):975–986

    Article  CAS  PubMed  Google Scholar 

  • Truong VD, Clare DA, Catignani GL, Swaisgood HE (2004) Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. J Agric Food Chem 52(5):1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG (2006) Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol 26(2):569–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasueda H, Kumazawa Y, Motoki M (1994) Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biosci Biotechnol Biochem 58(11):2041–2045

    Article  CAS  PubMed  Google Scholar 

  • Yew SE, Lim TJ, Lew LC, Bhat R, Mat-Easa A, Liong MT (2011) Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase. J Food Sci 76(3):H108–H115

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64(4):447–454

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama KI, Nakamura N, Seguro K, Kubota K (2000) Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64(6):1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Yüksel Z, Erdem YK (2010) The influence of transglutaminase treatment on functional properties of set yoghurt. Int J Dairy Technol 63:86–97

    Article  Google Scholar 

  • Zhang F, Fang L, Wang C, Shi L, Chang T, Yang H, Cui M (2013) Effects of starches on the textural, rheological, and color properties of surimi-beef gels with microbial tranglutaminase. Meat Sci 93(3):533–537

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Rinzema J, Tramper J, Bol J (1995) Microbial transglutaminase—a review of its production and application in food processing. Appl Microbiol Biotechnol 44(3–4):277–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altino Branco Choupina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, I.M., Matos, M., Costa, R. et al. Transglutaminases: recent achievements and new sources. Appl Microbiol Biotechnol 98, 6957–6964 (2014). https://doi.org/10.1007/s00253-014-5894-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5894-1

Keywords

Navigation