Skip to main content

Next-Generation Sequencing: Advantages, Disadvantages, and Future

  • Chapter
  • First Online:
Plant Omics: Trends and Applications

Abstract

It has been more than 35 years since the development of the groundbreaking method for DNA sequencing by Frederick Sanger and colleagues. This revolutionary study triggered the improvement of new methods that have provided great opportunities for low-cost and fast DNA sequencing. Strikingly after the Human Genome Project, the time interval between each sequencing technology started decreasing while amount of scientific knowledge has continued growing exponentially. Considering Sanger sequencing as the first generation, new generations of DNA sequencing have been introduced consequently. The development of the next-generation sequencing (NGS) technologies has contributed to this trend substantially by reducing costs and producing massive sequencing data. Hitherto, four sequencing generations have been defined. Second-generation sequencing that is currently the most commonly used NGS technology consists of library preparation, amplification, and sequencing steps while in third-generation sequencing, individual nucleic acids are sequenced directly in order to avoid biases and have higher throughput. Recently described fourth-generation sequencing aims conducting genomic analysis directly in the cell. Classified to different generations, NGS has led to overcome the limitations of conventional DNA sequencing methods and has found usage in a wide range of molecular biology applications. On the other hand, plenty of technical challenges, which need to be deeply analyzed and solved, emerged with these technologies. Every sequencing generation and platform, by reason of its methodological approach, carries characteristic advantages and disadvantages which determine the fitness for certain applications. Thus, assessment of these features, limitations, and potential applications help shaping the studies that will determine the route of omic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, Kawashima E (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28(20):e87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahassi EM, Stambrook PJ (2014) Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29(5):303–310

    Article  CAS  Google Scholar 

  • Bao S, Jiang R, Kwan W, Wang B, Ma X, Song YQ (2011) Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 56:406–414

    Article  CAS  PubMed  Google Scholar 

  • Beck S, O’Keeffe T, Coull JM, Köster H (1989) Chemiluminescent detection of DNA: application for DNA sequencing and hybridization. Nucleic Acids Res 17(13):5115–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett S (2004) Solexa Ltd. Pharmacogenomics 5:433–438

    Article  PubMed  Google Scholar 

  • Bennett ST, Barnes C, Cox A, Davies L, Brown C (2005) Toward the 1,000 dollars human genome. Pharmacogenomics 6:373–382

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara E, Catenazzi M, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A 80(13):3963–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW, Jarosz M, Krzymanska-Olejnik E, Kung L, Lipson D, Lowman GM, Marappan S, McInerney P, Platt A, Roy A, Siddiqi SM, Steinmann K, Thompson JF (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6(8):593–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941

    Article  CAS  PubMed  Google Scholar 

  • Chen EY (1994) The efficiency of automated DNA sequencing. In: Adams MD, Fields C, Venter JC (eds) Automated DNA sequencing and analysis. Academic, San Diego, pp 3–9

    Chapter  Google Scholar 

  • Chen CY (2014) DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 5:305

    PubMed  PubMed Central  Google Scholar 

  • Chen F, Dong M, Ge M, Zhu L, Ren L, Liu G, Mu R (2013) The history and advances of reversible terminators used in new generations of sequencing technology. Genomics Proteomics Bioinformatics 11(1):34–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 7:138–163

    Google Scholar 

  • Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107(37):16060–16065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  • Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93(11):113107

    Article  Google Scholar 

  • Flanagan JH, Owens CV, Romero SE, Waddell E, Kahn SH, Hammer RP, Soper SA (1998) Near-infrared heavy-atom-modified fluorescent dyes for base-calling in DNA-sequencing applications using temporal discrimination. Anal Chem 70(13):2676–2684

    Article  CAS  PubMed  Google Scholar 

  • França LT, Carrilho E, Kist TB (2002) A review of DNA sequencing techniques. Q Rev Biophys 35(02):169–200

    Article  PubMed  Google Scholar 

  • Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML (2012) Rapid incorporation kinetics and improved fidelity of a novel class of 3′-OH unblocked reversible terminators. Nucleic Acids Res 40(15):7404–7415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz M, McCombie WR (2015) Oxford nanopore sequencing and de novo assembly of a eukaryotic genome. Genome Res 25(11):1750–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heng JB, Ho C, Kim T, Timp R, Aksimentiev A, Grinkova YV, Sligar S, Schulten K, Timp G (2004) Sizing DNA using a nanometer-diameter pore. Biophys J 87(4):2905–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP (2012) Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol 6(Suppl 2):S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui P (2014) Next generation sequencing: chemistry, technology and applications. Top Curr Chem 336:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hutchison CA (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35(18):6227–6237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods. doi:10.1038/nmeth.3290, Epub ahead of print

    PubMed Central  Google Scholar 

  • Kan CW, Fredlake CP, Doherty EA, Barron AE (2004) DNA sequencing and genotyping in miniaturized electrophoresis systems. Electrophoresis 25:3564–3588

    Article  CAS  PubMed  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wählby C, Nilsson M (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10:857–860

    Article  CAS  PubMed  Google Scholar 

  • Kircher M, Kelso J (2010) High‐throughput DNA sequencing-concepts and limitations. Bioessays 32(6):524–536

    Article  CAS  PubMed  Google Scholar 

  • Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Grey JJ, Holden D, Saxena R, Wegener J, Turner SW (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 472:431–455

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sood A, Wegener J, Finn PJ, Nampalli S, Nelson JR, Sekher A, Mitsis P, Macklin J, Fuller CW (2005) Terminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by DNA polymerases. Nucleosides Nucleotides Nucleic Acids 24(5–7):401–408

    Article  CAS  PubMed  Google Scholar 

  • Larkin J, Henley R, Bell DC, Cohen-Karni T, Rosenstein JK, Wanunu M (2013) Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano 7(11):10121–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SS, Li C, Amamoto R, Peters DT, Turczyk BM, Marblestone AH, Inverso SA, Bernard A, Mali P, Rios X, Aach J, Church GM (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Bai X, Ruparel H, Kim S, Turro NJ, Ju J (2003) A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A 100(2):414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Bell NA, Hernandez-Ainsa S, Thacker VV, Thackray AM, Bujdoso R, Keyser UF (2013) Single protein molecule detection by glass nanopores. ACS Nano 7:4129–4134

    Article  CAS  PubMed  Google Scholar 

  • Litosh VA, Wu W, Stupi BP, Wang J, Morris SE, Hersh MN, Metzker ML (2011) Improved nucleotide selectivity and termination of 30-OH unblocked reversible terminators by molecular tuning of 2-nitrobenzyl alkylated HOMedU triphosphates. Nucleic Acids Res 39:e39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Lu B, Zhao Q, Li J, Gao T, Chen Y, Zhang Y, Liu Z, Fan Z, Yang F, You L, Yu D (2013a) Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv Mater 25:4549–4554

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yang C, Zhao K, Li J, Wu HC (2013b) Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat Commun 4:2989

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Feng J, Kis A, Radenoviç A (2014) Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8:2504–2511

    Article  CAS  PubMed  Google Scholar 

  • Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12(8):733–735

    Article  CAS  PubMed  Google Scholar 

  • Luckey JA, Drossman H, Kostichka AJ, Mead DA, D’Cunha J, Norris TB, Smith LM (1990) High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Res 18(15):4417–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15(12):1767–1776

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Mignardi M, Nilsson M (2014) Fourth-generation sequencing in the cell and the clinic. Genome Med 6(4):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110(1–2):3–24

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Herten DP, Lieberwirth U, Neumann M, Sauer M, Schulz A, Siebert S, Drexhage KH, Wolfrum J (1997) Efficient DNA sequencing with a pulsed semiconductor laser and a new fluorescent dye set. Chem Phys Lett 279(5):282–288

    Article  Google Scholar 

  • Mullis KB, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  • Novais RC, Thorstenson YR (2011) The evolution of Pyrosequencing® for microbiology: from genes to genomes. J Microbiol Methods 86(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Nyrén P (2007) The history of pyrosequencing. Methods Mol Biol 373:1–14

    Article  PubMed  Google Scholar 

  • Paegel BM, Blazej RG, Mathies RA (2003) Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Curr Opin Biotechnol 14(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • Porreca GJ, Shendure J, Church GM (2006) Polony DNA sequencing. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Greene and John Wiley, New York, pp 1–22, Unit 7.8

    Google Scholar 

  • Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza JA, Jensen MA, Baumeister K (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238(4825):336–341

    Article  CAS  PubMed  Google Scholar 

  • Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Carneiro MO, Schatz MC (2013) The advantages of SMRT sequencing. Genome Biol 14:405

    Article  PubMed  Google Scholar 

  • Ronaghi M (2000) Improved performance of pyrosequencing using single stranded DNA-binding protein. Anal Biochem 286:282–288

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281(5375):363–365

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352

    Article  CAS  PubMed  Google Scholar 

  • Rusk N (2014) Genomics: nanopores read long genomic DNA. Nat Methods 11(9):887

    Article  CAS  PubMed  Google Scholar 

  • Sanger F (1988) Sequences, sequences, and sequences. Ann Rev Biochem 57:1–28

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Coulson A (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Tuppy H (1951) The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem J 49(4):463–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hom Mol Genet 19(R2):R227–R240

    Article  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741):1728–1732

    Article  CAS  PubMed  Google Scholar 

  • Siwy Z, Fuliñski A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89:198103

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Sanders J, Kaiser R, Hughes P (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679

    Article  CAS  PubMed  Google Scholar 

  • Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW, He C, Korlach J (2012) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9(1):75–77

    Article  CAS  Google Scholar 

  • Soon WW, Hariharen M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9(640):1–14

    Google Scholar 

  • Srinivasan S, Batra J (2014) Four generations of sequencing—is it ready for the clinic yet? Next Generat Sequenc Applic 1:107

    Article  Google Scholar 

  • Stranneheim H, Lundeberg J (2012) Stepping stones in DNA sequencing. Biotechnol J 7(9):1063–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol. Chapter 7, Unit 7.10

    Google Scholar 

  • Wang Y, Yang Q, Wang Z (2014) The evolution of nanopore sequencing. Frontiers Genet 5:449

    Google Scholar 

  • Watson JD, Crick F (1953) A structure for deoxyribonucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Watts D, MacBeath J (2001) Automated fluorescent DNA sequencing on the ABI PRISM 310 genetic analyzer. Meth Mol Biol 167:153–170

    CAS  Google Scholar 

  • Wetterstrand KA (2014) DNA sequencing costs: data from the NHGRI genome sequencing program (GSP).www.genome.gov/sequencingcosts. Accessed Dec 2014

  • Wiemann S, Schilke A, Rechmann S, Zimmermann J, Voss H, Ansorge W (1996) Reducing “double sequences” in automated DNA sequencing with T7 DNA polymerase and internal labeling. Biotechniques 20(5):791–792

    CAS  PubMed  Google Scholar 

  • Wu R, Kaiser AD (1968) Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol 35(3):523–537

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Stupi BP, Litosh VA, Mansouri D, Farley D, Morris S, Mtezker S, Metzker ML (2007) Termination of DNA synthesis by N6-alkylated, not 3′-O-alkylated, photocleavable 2′-deoxyadenosine triphosphates. Nucleic Acids Res 35:6339–6349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şule Ari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ari, Ş., Arikan, M. (2016). Next-Generation Sequencing: Advantages, Disadvantages, and Future. In: Hakeem, K., Tombuloğlu, H., Tombuloğlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_5

Download citation

Publish with us

Policies and ethics