Skip to main content
Log in

Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Undesirable flavor caused by excessive higher alcohols restrains the development of the wheat beer industry. To clarify the regulation mechanism of the metabolism of higher alcohols in wheat beer brewing by the top-fermenting yeast Saccharomyces cerevisiae S17, the effect of temperature on the fermentation performance and transcriptional levels of relevant genes was investigated. The strain S17 produced 297.85 mg/L of higher alcohols at 20 °C, and the production did not increase at 25 °C, reaching about 297.43 mg/L. Metabolite analysis and transcriptome sequencing showed that the metabolic pathways of branched-chain amino acids, pyruvate, phenylalanine, and proline were the decisive factors that affected the formation of higher alcohols. Fourteen most promising genes were selected to evaluate the effects of single-gene deletions on the synthesis of higher alcohols. The total production of higher alcohols by the mutants Δtir1 and Δgap1 was reduced by 23.5 and 19.66% compared with the parent strain S17, respectively. The results confirmed that TIR1 and GAP1 are crucial regulatory genes in the metabolism of higher alcohols in the top-fermenting yeast. This study provides valuable knowledge on the metabolic pathways of higher alcohols and new strategies for reducing the amounts of higher alcohols in wheat beer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31771969), the National Key Research and Development Program of China (No. 2016YFD0400505), the China Postdoctoral Science Foundation (No. 2017M611169), the Hebei Province Postdoctoral Research Projects (No. B2018003031) and the Public Service Platform Project for Selection and Fermentation Technology of Industrial Microorganisms (No. 17PTGCCX00190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Wu Guo or Dong-Guang Xiao.

Ethics declarations

Ethical statement

This manuscript is in compliance with ethical standards. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZG., Wang, MQ., Wang, YP. et al. Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Appl Microbiol Biotechnol 103, 4917–4929 (2019). https://doi.org/10.1007/s00253-019-09807-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09807-x

Keywords

Navigation