Skip to main content
Log in

Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae

  • ORIGINAL PAPER
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Saccharomyces cerevisiae is widely used as aroma producer in the preparation of fermented foods and beverages. During food fermentations, secondary metabolites like 3-methyl-1-butanol, 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutanoate and 3-methylbutyrate emerge. These four compounds have a major influence on the final taste of fermented foods. Their presence is influenced by the availability of free branched chained amino acids (BCAA). To study the underlying molecular mechanism of the formation of these compounds, we performed genome-wide transcription analyses with cDNA microarrays. The expression profile of yeast during flavour formation, when cultivated on l-leucine, was compared to the expression profile of cells cultivated on ammonia. In addition, the expression profiles of cells cultivated in a batch culture were compared to cells cultivated under continuous growth conditions. Genome-wide gene analysis of these samples revealed a group of 117 genes, which were more than two-fold up- or down-regulated and significantly altered in gene expression (P<0.001) under both cultivation conditions. This group included genes encoding enzymes of different amino acid metabolism pathways. The group of the BCAA metabolism was not significantly altered in gene expression. Genes identified with altered expression levels, in only batch or continuous culture fermentions, represented functional groups concerning energy, protein fate, cell cycle and DNA processing. Furthermore, clustering of genome-wide data revealed that the type of cultivation overruled the differences in N-source in the gene-expression profiles. This observation emphasizes the importance of sample history in gene expression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  • Bysani N, Daugherty JR, Cooper TG (1991) Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J Bacteriol 173: 4977–4982

    CAS  Google Scholar 

  • Colantuoni C, Henry G, Zeger S, Pevsner J (2002) SNOMAD (Standardization and NOrmalization of MicroArray Data): web-accessible gene expression data analysis. Bioinformatics 18:1540–1541

    Article  CAS  Google Scholar 

  • Cox KH, Rai R, Distler M, Daugherty JR, Coffman JA, Cooper TG (2000) Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 275:17611–17618

    Article  CAS  Google Scholar 

  • De Boer M, Bebelman JP, Goncalves PM, Maat J, Van Heerikhuizen H, Planta RJ (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30:603–613

    Article  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  Google Scholar 

  • Derrick S, Large PJ (1993) Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. J Gen Microbiol 139:2783–2792

    CAS  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    Article  CAS  Google Scholar 

  • Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326:29–32

    Article  CAS  Google Scholar 

  • Dickinson JR, Salgado LE, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    Article  CAS  Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    Article  CAS  Google Scholar 

  • Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300

    Article  CAS  Google Scholar 

  • Ehrlich F (1907) Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe. Bere Deut Chem Ges 40:1027–1047

    CAS  Google Scholar 

  • Forsberg H, Gilstring CF, Zargari A, Martinez P, Ljungdahl PO (2001) The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol 42:215–228

    Article  CAS  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464

    Article  CAS  Google Scholar 

  • Larroy C, Pares X, Biosca JA (2002) Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269:5738–5745

    Article  CAS  Google Scholar 

  • Larroy C, Rosario Fernandez M, Gonzalez E, Pares X, Biosca JA (2003) Properties and functional significance of Saccharomyces cerevisiae ADHVI. Chem Biol Interact 143:229–238

    Article  Google Scholar 

  • Magasanik B (1992) Regulation of nitrogen utilization. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae: gene expression. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York pp. 283–318. ISBN 0879693576

  • Marshall A, Hodgson J (1998) DNA chips: an array of possibilities. Nat Biotechnol 16:27–31

    Article  CAS  Google Scholar 

  • Meijer MM, Boonstra J, Verkleij AJ, Verrips CT (1998) Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem 273:24102–24107

    Article  CAS  Google Scholar 

  • Meilgaard MC (1982) Prediction of flavor differences between beers from their chemical composition. J Agric Food Chem 30:1009–1017

    Article  CAS  Google Scholar 

  • Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K, Mannhaupt G, Pfeiffer F, Schuller C, Stocker S, Weil B (2000) MIPS: a database for genomes and protein sequences. Nucl Acids Res 28:37–40

    Article  CAS  Google Scholar 

  • Minehart PL, Magasanik B (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 174:1828–1836

    CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  CAS  Google Scholar 

  • Reed LJ, Browning KS, Niu XD, Behal RH, Uhlinger DJ (1989) Biochemical and molecular genetic aspects of pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Ann NY Acad Sci 573:155–167

    CAS  Google Scholar 

  • Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink GJ, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70:237–246

    Article  CAS  Google Scholar 

  • Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J (2005) Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res 5:757–766

    Article  CAS  Google Scholar 

  • Schoondermark-Stolk SA, ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J (2002) Identification of salt-induced genes of Zygosaccharomyces rouxii by using Saccharomyces cerevisiae GeneFilters. FEMS Yeast Res 2:525–532

    CAS  Google Scholar 

  • ter Schure EG, Flikweert MT, Van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64:1303–1307

    CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  Google Scholar 

  • van der Sluis C, Wolken WA, Giuseppin ML, Tramper J, Wijffels RH (2000) Effect of threonine, cystathionine, and the branched-chain amino acids on the metabolism of Zygosaccharomyces rouxii. Enzyme Microb Technol 26:292–300

    Article  Google Scholar 

  • van Helden J (2003) Regulatory sequence analysis tools. Nucl Acids Res 31:3593–3596

    Article  Google Scholar 

  • van Iersel MFM, Eppink MHM, van Berkel WJH, Rombouts FM, Abee T (1997) Purification and characterization of a novel NADP-dependent branched-chain alcohol dehydrogenase from Saccharomyces cerevisiae. Appl Environ Microbiol 63:4079–4082

    Google Scholar 

  • Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J (2002) HXT5 expression is determined by␣growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038

    Article  CAS  Google Scholar 

  • Vuralhan Z, Luttik MAH, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJH, Kötter P, Dickinson JR, Daran JM, Pronk JT (2005) Physiological characterization of the ARO10-dependent, broad-substrate- specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71:3276–3284

    Article  CAS  Google Scholar 

  • Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to André Boorsma (Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands) for his input and advice concerning microarray data analyses. This work was sponsored by Unilever Research Vlaardingen and supported by Senter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung A. Schoondermark-Stolk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoondermark-Stolk, S.A., Jansen, M., Verkleij, A.J. et al. Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae . World J Microbiol Biotechnol 22, 1347–1356 (2006). https://doi.org/10.1007/s11274-006-9182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9182-9

Keywords

Navigation