Skip to main content
Log in

Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrilases are of commercial interest in the selective synthesis of carboxylic acids from nitriles. Nitrilase induction was achieved here in three bacterial strains through the incorporation of a previously unrecognised and inexpensive nitrilase inducer, dimethylformamide (DMF), during cultivation of two Rhodococcus rhodochrous strains (ATCC BAA-870 and PPPPB BD-1780), as well as a closely related organism (Pimelobacter simplex PPPPB BD-1781). Benzonitrile, a known nitrilase inducer, was ineffective in these strains. Biocatalytic product profiling, enzyme inhibition studies and protein sequencing were performed to distinguish the nitrilase activity from that of sequential nitrile hydratase-amidase activity. The expressed enzyme, a 40-kDa protein with high sequence similarity to nitrilase protein Uniprot Q-03217, hydrolyzed 3-cyanopyridine to produce nicotinic acid exclusively in strains BD-1780 and BD-1781. These strains were capable of synthesising both the vitamin nicotinic acid as well as β-amino acids, a compound class of pharmaceutical interest. The induced nitrilase demonstrated high enantioselectivity (> 99%) in the hydrolysis of 3-amino-3-phenylpropanenitrile to the corresponding carboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed K, Kumar M, MS KCG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21:37–42

    Article  Google Scholar 

  • Almatawah QA, Cramp R, Cowan DA (1999) Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3:283–291

    Article  CAS  Google Scholar 

  • Badoei-Dalfard A, Karami Z, Ramezani-pour N (2016) Bench scale production of nicotinic acid using a newly isolated Stenotrophomonas maltophilia AC21 producing highly-inducible and versatile nitrilase. J Mol Catal B Enzym 133:S552–S559

    Article  Google Scholar 

  • Bauer R, Knackmuss H-J, Stolz A (1998) Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens strain d 3. Appl Microbiol Biotechnol 49:89–95

    Article  CAS  Google Scholar 

  • Binfeng L, Jinhuan S, Tao J (2011) Enzyme and process development for production of nicotinamide. Org Process Res Dev 15:291–293

    Article  Google Scholar 

  • Borsook H, Davenport HW, Jeffreys CEP, Warner RC (1937) The oxidation of ascorbic acid and its reduction in vitro and in vivo. J Biol Chem 117:237–279

    CAS  Google Scholar 

  • Brady D, Beeton A, Kgaje C, Zeevaart J, van Rantwijk F, Sheldon RA (2004) Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64:76–85

    Article  CAS  Google Scholar 

  • Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Struct Biol 12:775–782

    Article  CAS  Google Scholar 

  • Chhiba VP, Bode ML, Mathiba K, Kwezi W, Brady D (2012) Enantiomeric biocatalytic hydrolysis of β-aminonitriles to β-aminoamides using Rhodococcus rhodochrous ATCC BAA-870. J Mol Catal B Enzym 76:68–74

    Article  CAS  Google Scholar 

  • Chhiba VP, Bode M, Mathiba K, Brady D (2014) Enzymatic stereoselective synthesis of β-amino acids. In: Riva S, Fessner WD (eds) Cascade biocatalysis: integrating stereoselective and environmentally friendly reactions. Wiley-VCH, Germany, pp 297–313

    Google Scholar 

  • Cramp RA, Cowan DA (1999) Molecular characterization of a novel thermophilic nitrile hydratase. Biochem Biophys Acta 1431:249–260

    CAS  PubMed  Google Scholar 

  • Endo T, Watanabe I (1989) Nitrile hydratase of Rhodococcus sp. N774 purification and amino acid sequences. FEBS Lett 243:61–64

    Article  CAS  Google Scholar 

  • Fang S, An X, Liu H, Cheng Y, Hou N, Feng L, Huang X, Li C (2015) Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium. Bioresour Technol 185:28–34

    Article  CAS  Google Scholar 

  • Fernandes BCM, Mateo C, Kiziak C, Chmura A, Wacker J, van Rantwijk F, Stolz A, Sheldon RA (2006) Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal 348:2597–2603

    Article  CAS  Google Scholar 

  • Goncalves ER, Hara H, Miyazawa D, Davies JE, Eltis LP, Mohn WW (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:6183–6193

    Article  CAS  Google Scholar 

  • Gong J-S, Lu Z-M, Li H, Shi JS, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142

    Article  CAS  Google Scholar 

  • Gradley ML, Deverson CJF, Knowles CJ (1994) Asymmetric hydrolysis of R-(-)-S (+)-2-methylbutyronitrile by Rhodococcus rhodochrous NCIMB 11216. Arch Microbiol 161:246–251

    Article  CAS  Google Scholar 

  • Gregoriou M, Brown PR (1979) Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds. Eur J Biochem 96:101–108

    Article  CAS  Google Scholar 

  • Harper DB (1977) Microbial metabolism of aromatic nitriles: enzymology of aromatic nitriles: enzymology of C-N cleavage by Nocardia sp. (Rhodococcus group) N. C. I. B. 11216. Biochem J 165:309–319

    Article  CAS  Google Scholar 

  • He Y-C, Wu Y-D, Pan X-H, Ma C-L (2014) Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp. Biotechnol Lett 36:341–347

    Article  CAS  Google Scholar 

  • Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for Streptomycetes. Proc Natl Acad Sci 101:14031–14035

    Article  CAS  Google Scholar 

  • Kaul P, Banerjee UC (2008) Predicting enzyme behaviour in nonconventional media: correlating nitrilase function with solvent properties. J Ind Microbiol Biotechnol 35:713–720

    Article  CAS  Google Scholar 

  • Kinfe HH, Chhiba V, Frederick J, Bode ML, Mathiba K, Steenkamp PA, Brady D (2009) Enantioselective hydrolysis of β-hydroxy nitriles using the whole cell biocatalyst Rhodococcus rhodochrous ATCC BAA-870. J Mol Catal B Enzym 59:231–236

    Article  CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1. Eur J Biochem 182:349–356

    Article  CAS  Google Scholar 

  • Kobayashi M, Goda M, Shimizu S (1998) The catalytic mechanism of amidase also involves nitrile hydrolysis. FEBS Lett 439:325–328

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Layh N, Parratt J, Willetts A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B Enzym 5:476–474

    Article  Google Scholar 

  • Leonova TE, Astaurova OB, Ryabchenko LE, Yanenko AS (2000) Nitrile hydratase of Rhodococcus: optimization of synthesis in cells and industrial applications for acrylamide production. Appl Biochem Biotechnol 88:231–241

    Article  CAS  Google Scholar 

  • Lévi-Schil S, Soubrier F, Crutz-Le Coq A-M, Faucher D, Crouzet J, Pétré D (1995) Aliphatic nitrilase from a soil-isolated Comomonas testosteroni sp.: gene cloning and overexpression, purification and primary structure. Gene 161:15–20

    Article  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  Google Scholar 

  • Martínková L, Rucká L, Nešvera J, Pátek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33:8

    Article  Google Scholar 

  • Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron Asymmetry 17:320–323

    Article  CAS  Google Scholar 

  • Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Physiol Plant 65:1199–1202

    Article  CAS  Google Scholar 

  • Nagasawa T, Ryuno K, Yamada H (1986) Nitrile hydratase of Brevibacterium R-312 purification and characterisation. Biochem Biophys Res Commun 139:1304–1312

    Article  Google Scholar 

  • Nagasawa T, Nakamura T, Yamada H (1990) ε-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Microbiol 155:13–17

    Article  CAS  Google Scholar 

  • Nagasawa T, Takeuchi K, Yamda H (1991) Characterization of a new cobalt-containing nitrile hydratase purified from urea-induced cells of Rhodococcus rhodochrous J1. Eur J Biochem 196:581–589

    Article  CAS  Google Scholar 

  • Nagasawa T, Weiser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase or Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem 267:138–144

    Article  CAS  Google Scholar 

  • Nageshwar YVD, Sheelu G, Shambu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2011) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioprocess Biosyst Eng 34:515–523

    Article  CAS  Google Scholar 

  • Pertsovich SI, Guranda DT, Podchernyaev DA, Yanenko AS, Svedas VK (2005) Aliphatic amidase from Rhodococcus rhodochrous M8 is related to the nitrilase/cyanide hydratase family. Biochem Mosc 70:1280–1287

    Article  CAS  Google Scholar 

  • Petříčková A, Veselá AB, Kaplan O, Kubáč D, Uhnáková B, Malandra A, Felsberg J, Rinágelová A, Weyrauch P, Křen V, Bezouška K, Martínková L (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol 93:1553–1561

    Article  Google Scholar 

  • Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

  • Prasad S, Raj J, Bhalla TC (2009) Purification of a hyperactive nitrile hydratase from resting cells of Rhodococus rhodochrous PA-34. Indian J Microbiol 49:237–242

    Article  CAS  Google Scholar 

  • Precigou S, Wieser M, Pommares P, Goulas P, Duran R (2004) Rhodococcus pyridinovorans MW3, a bacterium producing a nitrile hydratase. Biotechnol Lett 26:1379–1384

    Article  CAS  Google Scholar 

  • Rapheeha OK, Roux-van der Merwe MP, Badenhorst J, Chhiba V, Bode ML, Mathiba K, Brady D (2017) Hydrolysis of nitriles by soil bacteria: variation with soil origin. J Appl Microbiol 122:686–697

    Article  CAS  Google Scholar 

  • Robinson WG, Hook RH (1964) Ricinine nitrilase: I. Reaction producer and substrate specificity. J Biol Chem 239:4257–4262

    CAS  PubMed  Google Scholar 

  • Sharma NN, Sharma M, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  CAS  Google Scholar 

  • Stalker DM, Malyj LB, McBride KE (1988) Properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314

    CAS  PubMed  Google Scholar 

  • Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnol Appl Biochem 15:283–302

    CAS  PubMed  Google Scholar 

  • Tani Y, Kurihara M, Nishise H (1989) Characterization of nitrile hydratase and amidase, which are responsible for the conversion of dinitriles to mononitriles, from Corynebacterium sp. Agric Biol Chem 53:3151–3158

    Article  CAS  Google Scholar 

  • Tauber MM, Cavaco-Paulo A, Robra K, Gubitz GM (2000) Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Appl Environ Microbiol 66:1634–1638

    Article  CAS  Google Scholar 

  • Thalenfeld B, Grossowicz N (1976) Regulatory properties of an inducible aliphatic amidase in a thermophilic Bacillus. J Gen Microbiol 94:131–141

    Article  CAS  Google Scholar 

  • Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming enzymes. J Appl Microbiol 106:703–727

    Article  CAS  Google Scholar 

  • Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33:22–24

    Article  CAS  Google Scholar 

  • Vejvoda V, Kubác D, Davidová A, Kaplan O, Śulc M, Śveda O, Chaloupková R, Martínkova L (2010) Purification and characterization of nitrilase from Fusarium solani IMI96840. Process Biochem 45:1115–1120

    Article  CAS  Google Scholar 

  • Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400

    Article  CAS  Google Scholar 

  • Yusuf F, Chaubey A, Jamwal U, Parshad R (2013) A new isolate from Fusarium proliferatum (AUF-2) for efficient nitrilase production. Appl Biochem Biotechnol 171:1022–1031

    Article  CAS  Google Scholar 

  • Zangi R, Zhou R, Berne BJ (2009) Urea’s action on hydrophobic interactions. J Am Chem Soc 131:1535–1541

    Article  CAS  Google Scholar 

  • Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY (2011) Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioprocess Biosyst Eng 34:315–322

    Article  CAS  Google Scholar 

  • Zheng JG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  CAS  Google Scholar 

Websites

Download references

Acknowledgements

We would like to thank the following people at the University of the Witwatersrand: Prof. Joseph Michael; Prof. Charles De Koning; and Dr. Amanda Rousseau. At the CSIR, we would like to extend thanks to Mr. Sipho Mamputhu (for assistance with LC-MSMS protein sequencing) as well as Dr. Priyen Pillay, Dr. Lusisiwe Kwezi, Dr. Ofense Poe, Advaita Singh, Sibongile Mtimka, Dr. Daria Rutkovska, Dr. Kevin Wellington and Dr. Tsepo Tsekoa.

Funding

Support was received from the Department of Science and Technology Biocatalysis Initiative (Grant 0175/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Brady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhiba-Govindjee, V.P., Mathiba, K., van der Westhuyzen, C.W. et al. Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous. Appl Microbiol Biotechnol 102, 10055–10065 (2018). https://doi.org/10.1007/s00253-018-9367-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9367-9

Keywords

Navigation