Skip to main content
Log in

Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Thirteen independent populations of Saccharomyces cerevisiae (nine haploid and four diploid) were maintained in continuous culture for up to approximately 1000 generations, with growth limited by the concentration of organic phosphates in medium buffered at pH 6. Analysis of clones isolated from these populations showed that a number (17) of large-scale chromosomallength variants and rearrangements were present in the populations at their termination. Nine of the 16 yeast chromosomes were involved in such changes. Few of the changes could be explained by copy-number increases in the structural loci for acid phosphatase. Several considerations concerning the nature and frequency of the chromosome-length variants observed lead us to conclude that they are selectively advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J, Hansche PE (1974) Genetics 76:327–338

    Google Scholar 

  • Adams J, Oeller PW (1986) Proc Natl Acad Sci USA 83:7124–7127

    Google Scholar 

  • Adams J, Paquin C, Oeller PW, Lee LW (1985) Genetics 110:173–185

    Google Scholar 

  • Andersen N, Thill GP, Kramer RA (1983) Mol Cell Biol 3:562–569

    Google Scholar 

  • Anderson RP, Roth JR (1977) Annu Rev Microbiol 31:473–505

    Google Scholar 

  • Carle GF, Olson MV (1984) Nucleic Acids Rev 12:5647–5664

    Google Scholar 

  • Carle GF, Olson MV (1985) Proc Natl Acad Sci USA 82:3756–3760

    Google Scholar 

  • Chu G, Vollrath D, Davis RW (1986) Science 234:1582–1585

    Google Scholar 

  • Crow JF, Kimura M (1965) Amer Nat 99:439–450

    Google Scholar 

  • Francis JC, Hansche PE (1972) Genetics 70:59–73

    Google Scholar 

  • Francis JC, Hansche PE (1973) Genetics 74:259–265

    Google Scholar 

  • Hansche PE (1975) Genetics 79:661–674

    Google Scholar 

  • Hansche PE, Beres V, Lange P (1978) Genetics 88:673–687

    Google Scholar 

  • Helling RB, Vargas CN, Adams J (1987) Genetics 116:349–358

    Google Scholar 

  • Hinnen A, Bajwa W, Meyhack B, Rudolph H (1987) Molecular aspects of acid phosphatase synthesis in Saccharomyces cerevisiae. In: Torriani-Gorini A, Rothmann FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington DC, pp 56–62

    Google Scholar 

  • Kaplan NL, Hudson RR, Langley CH (1989) Genetics 123:887–889

    Google Scholar 

  • Kouprina NY, Pasina OB, Nikolaishwili NT, Tsouladze AM, Larionov VL (1988) Yeast 4:257–269

    Google Scholar 

  • Krawiec S, Riley M (1990) Microbiol Rev 54:502–539

    Google Scholar 

  • Kubitschek HE (1974) Symp Soc Gen Microbiol 24:105–130

    Google Scholar 

  • Link AJ, Olson MV (1991) Genetics 127:681–698

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook, J (1982) Molecular cloning — a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Maruyama T, Birky CW Jr (1991) Genetics 127:449–451

    Google Scholar 

  • Maynard Smith J, Haigh J (1974) Genet Res 23:25–35

    Google Scholar 

  • Mikus MD, Petes TD (1982) Genetics 101:369–404

    Google Scholar 

  • Mortimer RK, Schild D (1985) Microbiol Rev 49:181–212

    Google Scholar 

  • Muller HJ (1932) Amer Nat 68:118–138

    Google Scholar 

  • Newlon CS (1988) Microbiol Rev 52:568–601

    Google Scholar 

  • O'Brien SJ, Seuanez HN, Womack JE (1988) Annu Rev Genet 22:323–351

    Google Scholar 

  • Ornston LN, Neidle EL, Houghton JE (1990) Gene rearrangements, a force for evolutionary change; DNA sequence rearrangements, a source of genetic constancy (1990) In: Drlica K, Riley M (eds) The Bacterial chromosome. ASM Publications, Washington D.C. pp 325–333

    Google Scholar 

  • Paquin C, Adams J (1982) Curr Genet 6:21–24

    Google Scholar 

  • Paquin CE, Adams J (1983) Nature 302:495–500

    Google Scholar 

  • Paquin CE, Dorsey M, Crable S, Sprinkel M, Sondej M, Williamson VM (1992) Genetics 130:263–271

    Google Scholar 

  • Petes PD, Hill CW (1988) Annu Rev Genet 22:147–168

    Google Scholar 

  • Rigby PWJ, Burleigh BD, Hartley BS (1974) Nature 251:200–204

    Google Scholar 

  • Riley M (1984) Arrangement and rearrangement of bacterial genomes. In: Mortlock, RP (ed) Microorganisms as model systems for studying evolution. Plenum Press, New York, pp 285–316

    Google Scholar 

  • Riley M (1985) Discontinuous processes in the evolution of the bacterial genome. In: Hecht, MK, Wallace, B and Prance, G (eds) Evolutionary Biology. Plenum Press, New York, pp 1–36

    Google Scholar 

  • Sonti RV, Roth JR (1989) Genetics 123:19–28

    Google Scholar 

  • Steensma HY de, Jonge P de, Kaptein A, Kaback DB (1989) Curr Genet 16:131–137

    Google Scholar 

  • Sugawara N, Szostak JW (1983) Proc Natl Acad Sci USA 80:5675–5679

    Google Scholar 

  • Venter U, Horz W (1989) Nucleic Acids Res 17:1353–1369

    Google Scholar 

  • Vollrath D, Davis RW (1987) Nucleic Acids Res 15:7865–7876

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. W. Birky, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J., Puskas-Rozsa, S., Simlar, J. et al. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae . Curr Genet 22, 13–19 (1992). https://doi.org/10.1007/BF00351736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351736

Key words

Navigation