Skip to main content

Advertisement

Log in

Bioethanol production from leftover food by yeasts isolated from fruit at Ambo University, Ethiopia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

As fossil fuel emissions have a detrimental effect on the environment, renewable energy sources are crucial in replacing conventional energy sources. Isolation and characterization of yeast and assessing their potential for bioethanol production from leftover food are the main aim of this research. The yeasts were isolated from fruits and characterized using a conventional microbiological technique, based on how well they were able to ferment and produce bioethanol from glucose. Four yeast isolates were selected for bioethanol production based on the bioethanol production potential. Yeast isolate BaII07 yielded (85.5 ± 6.6) bioethanol from 3 g of rice leftover, while it produced only 32.9 ± 6.6 from 4 g of qinche leftover. Yeast isolate OrII20 gave the highest bioethanol from 3 g of rice (105 ± 6.6), whereas it produced only 52.6 ± 6.6 from qinche 2 g and 4 g. OrII23 and Pa II36 yielded bioethanol from 72.3 ± 6.6 to 39.5 ± 11.4, from different leftover foods evaluated. In this research, four efficient bioethanol producing yeasts from leftover food were isolated and characterized by conventional methods. The elite yeast isolate OrII20 produced up to 105 ± 6.6 g/L ethanol from rice leftover food. This contributes to curve the problem of managing solid organic wastes without harming the environment. Accordingly, this study has two advantages; by preventing the buildup of solid organic waste in the environment, it first helps to ensure environmental sustainability. Second, it produced bioethanol, which can improve or replace conventional energy sources and reduce greenhouse gas emissions because it is made from renewable sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

I will provide according to its needy.

References

  • Abdelaal, A. H., McKay, G., & Mackey, H. R. (2019). Food waste from a university campus in the middle East: Drivers, composition, and resource recovery potential. Waste Management, 98, 14–20.

    Article  Google Scholar 

  • Abinaya, S., Mounika, D. S., & Suganya, A. (2020). Bioconversion of food waste into ethanol using enzymatic Hydrolyzation—Mini review. Journal of Emerging Technologies and Innovative Research, 7, 819–823.

    Google Scholar 

  • Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second-generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653.

    Article  CAS  Google Scholar 

  • Afshan, N., Jan, M., Hamid, M., Nawaz, B., Jabeen, D., Ashraf, A., & Alam, S. (2017). Isolation and characterization of indigenous yeast species from yogurt and sugarcane juice for production of bio-ethanol. PSM Microbiology, 2(1), 9–14.

    Google Scholar 

  • Aggarwal, N. K., Kumar, N., & Mittal, M. (2022). Bioethanol production: Past and present. Springer Nature.

    Book  Google Scholar 

  • Akaracharanya, A., Kesornsit, J., Leepipatpiboon, N., Srinorakutara, T., Kitpreechavanich, V., & Tolieng, V. (2011). Evaluation of the waste from cassava starch production as a substrate for ethanol fermentation by Saccharomyces cerevisiae. Annals of Microbiology, 61(3), 431–436.

    Article  CAS  Google Scholar 

  • Alabere, A., Ogbonna, D. N., & Williams, J. O. (2020). Screening of yeast cells for the production of wine from banana and pineapple substrates. Journal of Advances in Microbiology, 20, 38–55. https://doi.org/10.9734/jamb/2020/v20i730264

    Article  CAS  Google Scholar 

  • Alvarado, R., & Toledo, E. (2017). Environmental degradation and economic growth: Evidence for a developing country. Environment, Development and Sustainability, 19(4), 1205–1218.

    Article  Google Scholar 

  • Azhar, S. H. M., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Faik, A. A. M., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003

    Article  Google Scholar 

  • Barnett, J. A., Payne, R.W., & Yarrow, D. (1990). Yeasts: Characteristics and identifcation.

  • Benti, N. E., Gurmesa, G. S., Argaw, T., Aneseyee, A. B., Gunta, S., Kassahun, G. B., & Asfaw, A. A. (2021). The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnology for Biofuels, 14(1), 1–24.

    Article  Google Scholar 

  • Boboye, B., & Dayo-Owoyemi, I. (2009). Comparative evaluation of the sensory properties of doughs fermented with yeasts isolated from orange. Biotechnology, 8(3), 389–392.

    Article  Google Scholar 

  • Canh, N. P., Schinckus, C., & Thanh, S. D. (2019). Do economic openness and institutional quality influence patents? Evidence from GMM systems estimates. The International Economy, 157, 134–16928.

    Article  Google Scholar 

  • Cekmecelioglu, D., & Uncu, O. N. (2013). Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste management, 33(3), 735–739.

    Article  CAS  Google Scholar 

  • Chauhan, N. M., Hajare, S. T., Mamo, B., & Madebo, A. A. (2021). Bioethanol production from stalk residues of Chiquere and Gebabe varieties of sweet Sorghum. International Journal of Microbiology, 2021, 1–16. https://doi.org/10.1155/2021/6696254

    Article  CAS  Google Scholar 

  • Chen, X., Zhao, Y., Chen, B., Su, W., Zhang, Z., Liu, Y., Xu, X., Tang, J., Hou, P., & Han, W. (2021). Effects of enzyme volumes on hydrolysis and fermentation for ethanol production from leftover cooked rice. Frontiers in Bioengineering and Biotechnology, 9, 631089. https://doi.org/10.3389/fbioe.2021.631089

    Article  Google Scholar 

  • Choi, G. W., Um, H. J., Kim, Y., Kang, H. W., Kim, M., Chung, B. W., & Kim, Y. H. (2010). Isolation and characterization of two soil-derived yeasts for bioethanol production on Cassava starch. Biomass and Bioenergy, 34(8), 1223–1231. https://doi.org/10.1016/j.biombioe.2010.03.019

    Article  CAS  Google Scholar 

  • Dahiru, T. A., Babanladi, M. I., Sani, A., Sirajo, M., & Cyril, O. (2018). Morphological and biochemical characterization of isolated Aspergillus niger, Saccharomyces cerevisiae, and Zymomonas mobilis from local indigenous sources. GSC Biological and Pharmaceutical Sciences, 05, 078–085. https://doi.org/10.30574/gscbps.2018.5.3.0147

    Article  CAS  Google Scholar 

  • Datta, P., Tiwari, S., & Pandey, L. M. (2018). Bioethanol production from waste breads using Saccharomyces cerevisiae. In S. Ghosh (Ed.), Utilization and management of bioresources. Springer.

    Google Scholar 

  • El-Shinnawy, N. A., Heikal, S., & Fahmy, Y. (1983). Saccharification of cotton bolls by concentrated sulphuric acid. Research and Industry, 28(2), 123–126.

    CAS  Google Scholar 

  • Endoh, R., Horiyama, M., & Ohkuma, M. (2021). D-fructose assimilation and fermentation by yeasts belonging to Saccharomycetes: Rediscovery of universal phenotypes and elucidation of fructophilic behaviors in Ambrosiozymaplatypodis and Cyberlindnera americana. Microorganisms, 9(4), 758. https://doi.org/10.3390/microorganisms9040758

    Article  CAS  Google Scholar 

  • Fahmy, T. Y. A., Fahmy, Y., Mobarak, F., et al. (2020). Biomass pyrolysis: Past, present, and future. Environment, Development, and Sustainability, 22, 17–32. https://doi.org/10.1007/s10668-018-0200-5

    Article  Google Scholar 

  • Fahmy, T. Y. A., & Mobarak, F. (2013). Advanced binderless board-like green nanocomposites from undebarked cotton stalks and mechanism of self-bonding. Cellulose, 20(3), 1453.

    Article  CAS  Google Scholar 

  • Fahmy, Y. (1982). Pyrolysis of agricultural residues. I. Prospects of lignocellulose pyrolysis for producing chemicals and energy sources. Cellulose Chemistry and Technology, 16, 347–355.

    CAS  Google Scholar 

  • Fahmy, Y., Fadl, M. H., & El-Shinnawy, N. A. (1975). Saccharification of cotton stalks. Research and Industry, 20(1), 7–10.

    CAS  Google Scholar 

  • Fahmy, Y., Fahmy, T. Y. A., Mobarak, F., et al. (2017). Agricultural residues (wastes) for manufacture of the paper, board, and miscellaneous products: Background overview and prospects. International Journal of ChemTech Research, 10, 424–448.

    Google Scholar 

  • Fahmy, Y., Mobarak, F., & Schweers, W. (1982). Pyrolysis of agricultural residues. II. Yield and chemical composition of tars and oils produced from cotton stalks, and assessment of lignin structure. Cellulose Chemistry and Technology, 16, 453–459.

    CAS  Google Scholar 

  • Garcia-Garcia, G., Woolley, E., Rahimifard, S., Colwill, J., White, R., & Needham, L. (2017). A methodology for sustainable management of food waste. Waste and Biomass Valorization, 8(6), 2209–2227.

    Article  CAS  Google Scholar 

  • Hafid, H. S., Shah, U. K. M., Baharuddin, A. S., & Ariff, A. B. (2017). Feasibility of using kitchen waste as future substrate for bioethanol production: A review. Renewable and Sustainable Energy Reviews, 74, 671–686.

    Article  CAS  Google Scholar 

  • Hager, A. S., Wolter, A., Jacob, F., Zannini, E., & Arendt, E. K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 56(2), 239–247.

    Article  CAS  Google Scholar 

  • Islam, M. M., Khan, M. K., Tareque, M., Jehan, N., & Dagar, V. (2021). Impact of globalization, foreign direct investment, and energy consumption on CO2 emissions in Bangladesh: Does institutional quality matter? Environmental Science and Pollution Research, 28, 48851–48871. https://doi.org/10.1007/s11356-021-13441-4

    Article  Google Scholar 

  • Iticha, T. N. (2016). Isolation and screening of ethanol tolerant yeast for bio-ethanol production in Ethiopia. Global Journal of Life Sciences and Biological Research, 2(2), 1–7.

    Google Scholar 

  • Joshi, S. S., Dhopeshwarkar, R., Jadhav, U., Jadhav, R., D'souza, L., & Dixit, J. (2001). Continuous ethanol production by fermentation of waste banana peels using flocculating yeast.

  • Kim, S., Park, J. M., & Kim, C. H. (2013). Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromycesmarxianus CBS1555. Applied Biochemistry and Biotechnology, 169(5), 1531–1545. https://doi.org/10.1007/s12010-013-0094-5

    Article  CAS  Google Scholar 

  • Kreger-van Rij, N.J.W. (1984). The yeast: a taxonomic study. Elsevier Science Publishers: Amsterdam. https://doi.org/10.1002/jobm.3620250815.

  • Kumar, S. (2012). Textbook of microbiology. JP Medical Ltd.

  • Kurtzman, C.P., Fell, J.W., Boekhout, T., & Robert, V. (2011). Methods for isolation, phenotypic characterization, and maintenance of yeasts. In The yeasts (pp. 87–110). Elsevier. https://doi.org/10.1016/B978-0-444-52149-1.00007-0.

  • Lareo, C., Ferrari, M. D., Guigou, M., Fajardo, L., Larnaudie, V., Ramírez, M. B., & Martínez-Garreiro, J. (2013). Evaluation of sweet potato for fuel bioethanol production: Hydrolysis and fermentation. Springerplus, 2(1), 1–11.

    Article  Google Scholar 

  • Ludlow, P. (2018). The European Commission (pp. 85–132). In The New European Community: Routledge.

    Google Scholar 

  • Matos, I.T.S.R, de Souza, V.A., Giovana do Rosário, D.Â., Astolf-Filho, S., & Vital, M.J.S. (2021). Yeasts with fermentative potential associated with fruits of Camu Camu (Myrciaria Dubia, Kunth) from North of Brazilian Amazon. https://doi.org/10.1155/2021/9929059.

  • Matsakas, L., Kekos, D., Loizidou, M., & Christakopoulos, P. (2014). Utilization of household food waste for the production of ethanol at high dry material content. Biotechnology for Biofuels, 7(1), 1–9.

    Article  Google Scholar 

  • Mobarak, F. (1983). Rapid continuous pyrolysis of cotton stalks for charcoal production. Holzforschung, 37(5), 251–254.

    Article  CAS  Google Scholar 

  • Mobarak, F., Fahmy, Y., & Augustin, H. (1982a). Binderless lignocellulose composite from bagasse and mechanism of self-bonding. Holzforschung, 36(3), 131–135.

    Article  CAS  Google Scholar 

  • Mobarak, F., Fahmy, Y., & Schweers, W. (1982b). Production of phenols and charcoal from bagasse by a rapid continuous pyrolysis process. Wood Science and Technology, 16, 59–66.

    Article  CAS  Google Scholar 

  • Modi, K., Joshi, B., & Patel, P. (2018). Isolation and characterization of xylose-fermenting yeast from different fruits for bioethanol production. International Journal of Current Microbiology and Applied Sciences, 7(1), 2426–2435. https://doi.org/10.20546/ijcmas.2018.701.292

    Article  CAS  Google Scholar 

  • Mrabet, Z., & Alsamara, M. (2017). Testing the Kuznets curve hypothesis for Qatar: A comparison between carbon dioxide and ecological footprint. Renewable and Sustainable Energy Reviews, 70, 1366–1375.

    Article  CAS  Google Scholar 

  • Muktham, R., Bhargava, S., Bankupalli, S., & Ball, A. (2016). A review on 1st and 2nd generation bioethanol production-recent progress. Journal of Sustainable Bioenergy Systems, 2016(6), 72–92.

    Article  Google Scholar 

  • Mutreja, R., Das, D., Goyal, D., & Goyal, A. (2011). Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum. Enzyme Research. https://doi.org/10.4061/2011/340279

    Article  Google Scholar 

  • Nasir, A., Rahman, S. S., Hossain, M. M., & Choudhury, N. (2017). Isolation of Saccharomyces cerevisiae from pineapple and orange and study of metal’s effectiveness on ethanol production. European Journal of Microbiology and Immunology, 7(1), 76–91. https://doi.org/10.1556/1886.2016.00035

    Article  CAS  Google Scholar 

  • Nasreen, Z., Jabeen, S., Shafique, M., Usman, S., Yaseen, T., Yasmeen, A., & Nazir, S. (2014). Production of alcohol by yeast isolated from apples, oranges, and bananas. International Journal of Food and Nutrition Sciences, 1(2), 16–19.

    Google Scholar 

  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68.

    Article  CAS  Google Scholar 

  • Okafor, N., & Okeke, B.C. (2017). Modern industrial microbiology and biotechnology. 2nd edn. 1–489. CRC Press.

  • Onyeaka, H., Mansa, R. F., Wong, C. M. V. L., & Miri, T. (2022). Bioconversion of starch base food waste into bioethanol. Sustainability, 14(18), 11401.

    Article  CAS  Google Scholar 

  • Panahi, H. K. S., Dehhaghi, M., Guillemin, G. J., Gupta, V. K., Lam, S. S., Aghbashlo, M., & Tabatabaei, M. (2022). Bioethanol production from food wastes rich in carbohydrates. Current Opinion in Food Science, 43, 71–81.

    Article  Google Scholar 

  • Parameswari, K., Hemalatha, M., Priyanka, K., & Kishori, B. (2015). Isolation of yeast and ethanol-producing from papaya (Carica papaya) and grape (Vitis vinifera) fruits. International Journal of Scientific & Engineering Research, 6(2).

  • Prajapati, V., Trivedi, U., & Patel, K. C. (2015). Bioethanol production from raw corn starch and food waste employ simultaneous saccharification and fermentation approaches. Waste and Biomass Valorization, 6(2), 191–200. https://doi.org/10.1007/s12649-014-9338-z

    Article  CAS  Google Scholar 

  • Rehman, A., Ma, H., Ozturk, I., Murshed, M., & Dagar, V. (2021). The dynamic impacts of CO2 emissions from diferent sources on Pakistan’s economic progress: A roadmap to sustainable development. Environment, Development and Sustainability, 23, 17857–21788. https://doi.org/10.1007/s10668-021-01418-9

    Article  Google Scholar 

  • Ruriani, E., Sunarti, T. C., & Meryandini, A. (2012). Yeast isolation for bioethanol production. HAYATI Journal of Biosciences, 19(3), 145–149. https://doi.org/10.4308/hjb.19.3.145

    Article  Google Scholar 

  • Singh, A., Singhania, R. R., Soam, S., Chen, C. W., Haldar, D., Varjani, S., & Patel, A. K. (2022). Production of bioethanol from food waste: Status and perspectives. Bioresource Technology. https://doi.org/10.1016/j.biortech.2022.127651

    Article  Google Scholar 

  • Squeo, G., De Angelis, D., Leardi, R., Summo, C., & Caponio, F. (2021). Background, applications, and issues of the experimental designs for mixture in the food sector. Foods, 10(5), 1128.

    Article  CAS  Google Scholar 

  • Tesfaw, A., Oner, E. T., & Assefa, F. (2021). Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochemistry and Biophysics Reports, 25, 100886. https://doi.org/10.1016/j.bbrep.2020.100886

    Article  CAS  Google Scholar 

  • Tillaguango, B., Alvarado, R., Dagar, V., Murshed, M., Pinzón, Y., & Méndez, P. (2021). Convergence of the ecological footprint in Latin America: The role of the productive structure. Environmental Science and Pollution Research, 28, 59771–65978. https://doi.org/10.1007/s11356-021-14745-1

    Article  Google Scholar 

  • Toman, M. (2003). The roles of the environment and natural resources in economic growth analysis (No. 1318-2016-103153).

  • Tsegaye, Z. (2016). Isolation, identification, and characterization of ethanol-tolerant yeast species from fruits for the production of bioethanol. International Journal of Modern Chemistry and Applied Science, 3, 437–443. https://doi.org/10.5897/JYFR2013.0112

    Article  CAS  Google Scholar 

  • Tsegu, G., Birri, D. J., Tigu, F., & Tesfaye, A. (2022). Bioethanol production from biodegradable wastes using native yeast isolates from Ethiopian traditional alcoholic beverages. Biocatalysis and Agricultural Biotechnology, 43, 102401.

    Article  CAS  Google Scholar 

  • United-Nations. (2015). General assembly resolution 70/1: Transforming our world: The 2030 agenda for sustainable development. Seventieth United Nations Gen. Assem. New York, 25, 86–97.

  • Utama, G. L., Tyagita, I. K., Wira, D. W., & Balia, R. L. (2019). Stress tolerance yeast strain from papaya wastes for bioethanol production. GEOMATE Journal, 17(61), 97–103. https://doi.org/10.21660/2019.61.4796

    Article  Google Scholar 

  • Vučurović, D. G., Dodić, S. N., Popov, S. D., Dodić, J. M., & Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, 367–372.

    Article  Google Scholar 

  • Walker, G. M. (2009). Yeasts. In esk encyclopedia of microbiology (pp. 1174–1187). Academic Press/Elsevier.

  • Wickerham, L. J. (1951). Taxonomy of yeasts (No. 1029). US department of agriculture.

  • Yarrow, D. (1998). Methods for the isolation, maintenance, and identification of yeasts. In The yeasts (pp. 77–100). Elsevier.

  • Zhang, L., Zhao, H., Gan, M., Jin, Y., Gao, X., Chen, Q., & Wang, Z. (2011). Application of simultaneous saccharification and fermentation (SSF) from viscosity reduction of raw sweet potato for bioethanol production at the laboratory, pilot, and industrial scales. Bioresource Technology, 102(6), 4573–4579.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ambo University specifically the Department of Biology, College of Natural and Computational Sciences for allowing us to use laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amdebrhan Sisay.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisay, A., keneni, A. & Kumsa, F. Bioethanol production from leftover food by yeasts isolated from fruit at Ambo University, Ethiopia. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04023-0

Keywords

Navigation